The answer is x = 6
To solve this you would use the pythagorean theorem which is a^2 + b^2 = c^2
In this problem a = x b = 8 and c = 10
You would then square these numbers
x^2 + 64 = 100
Next, you would subtract 64 from both sides.
x^2 = 36
All that’s left is the find the square root, which is x = 6.
So, therefore, you’re answer is x = 6
Answer:
See the explanation
Step-by-step explanation:
We know that
f(x) = 2x⁶ + 3x⁴ - 4x³ + (1/x) - sin2x
Lets calculate the derivatives:
f'(x) = 6(2x⁵) + 4(3x³) - 3(4x²) -( 1/x²) - 2(cos2x)
f'(x) = 12x⁵ + 12x³ - 12x² - (1/x²) - 2cos2x
Similarly:
f''(x) = 60x⁴ + 36x² - 24x + (2/x³) + 4sin2x
f'''(x) = 240x³ + 72x - 24 - (6/x⁴) + 8cos2x
Rearrange:
f'''(x) - 240x³ +72x - (6/x⁴) + 8cos2x - 24
f''''(x) = 720x² + 72 + (24/x⁵) - 16sin2x
Rearrange:
f''''(x) = 720x² + (24/x⁵) - 16sin2x +72
The factors of 20 are 1,2,3,5,6,10,15, and 30
6+3=9.
Answer:
- plane: 550 mph
- wind: 50 mph
Step-by-step explanation:
If p and w represent the speeds of the plane and wind, respectively, the speed into the wind is ...
p - w = (3000 mi)/(6 h) = 500 mi/h
And, the speed with the wind is ...
p + w = (3000 mi)/(5 h) = 600 mi/h
Adding these two equations gives us ...
2p = 1100 mi/h
p = 550 mi/h . . . . . . . divide by 2
Then the wind speed is ...
w = 600 mi/h - p = (600 -550) mi/h
w = 50 mi/h
The rate of the plane in still air is 550 mi/h; the rate of the wind is 50 mi/h.
Answer:
I believe it should be A
Step-by-step explanation: