1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ne4ueva [31]
3 years ago
15

Can someone explain how this is right please

Mathematics
1 answer:
Daniel [21]3 years ago
4 0
Because when you add them all up that's what the answers are
You might be interested in
What is the expansion of (3+x)^4
Vlad1618 [11]

Answer:

\left(3+x\right)^4:\quad x^4+12x^3+54x^2+108x+81

Step-by-step explanation:

Considering the expression

\left(3+x\right)^4

Lets determine the expansion of the expression

\left(3+x\right)^4

\mathrm{Apply\:binomial\:theorem}:\quad \left(a+b\right)^n=\sum _{i=0}^n\binom{n}{i}a^{\left(n-i\right)}b^i

a=3,\:\:b=x

=\sum _{i=0}^4\binom{4}{i}\cdot \:3^{\left(4-i\right)}x^i

Expanding summation

\binom{n}{i}=\frac{n!}{i!\left(n-i\right)!}

i=0\quad :\quad \frac{4!}{0!\left(4-0\right)!}3^4x^0

i=1\quad :\quad \frac{4!}{1!\left(4-1\right)!}3^3x^1

i=2\quad :\quad \frac{4!}{2!\left(4-2\right)!}3^2x^2

i=3\quad :\quad \frac{4!}{3!\left(4-3\right)!}3^1x^3

i=4\quad :\quad \frac{4!}{4!\left(4-4\right)!}3^0x^4

=\frac{4!}{0!\left(4-0\right)!}\cdot \:3^4x^0+\frac{4!}{1!\left(4-1\right)!}\cdot \:3^3x^1+\frac{4!}{2!\left(4-2\right)!}\cdot \:3^2x^2+\frac{4!}{3!\left(4-3\right)!}\cdot \:3^1x^3+\frac{4!}{4!\left(4-4\right)!}\cdot \:3^0x^4

=\frac{4!}{0!\left(4-0\right)!}\cdot \:3^4x^0+\frac{4!}{1!\left(4-1\right)!}\cdot \:3^3x^1+\frac{4!}{2!\left(4-2\right)!}\cdot \:3^2x^2+\frac{4!}{3!\left(4-3\right)!}\cdot \:3^1x^3+\frac{4!}{4!\left(4-4\right)!}\cdot \:3^0x^4

as

\frac{4!}{0!\left(4-0\right)!}\cdot \:\:3^4x^0:\:\:\:\:\:\:81

\frac{4!}{1!\left(4-1\right)!}\cdot \:3^3x^1:\quad 108x

\frac{4!}{2!\left(4-2\right)!}\cdot \:3^2x^2:\quad 54x^2

\frac{4!}{3!\left(4-3\right)!}\cdot \:3^1x^3:\quad 12x^3

\frac{4!}{4!\left(4-4\right)!}\cdot \:3^0x^4:\quad x^4

so equation becomes

=81+108x+54x^2+12x^3+x^4

=x^4+12x^3+54x^2+108x+81

Therefore,

  • \left(3+x\right)^4:\quad x^4+12x^3+54x^2+108x+81
6 0
4 years ago
Make the equation 28 x 1/7 = 4 into a division equation<br> PLEASE ANSWER FAST!!!!
Minchanka [31]
4 divided by 1/7 = 28 i believe. sorry if i’m wrong
7 0
4 years ago
Suppose that f: R --&gt; R is a continuous function such that f(x +y) = f(x)+ f(y) for all x, yER Prove that there exists KeR su
Pachacha [2.7K]
<h2>Answer with explanation:</h2>

It is given that:

f: R → R is a continuous function such that:

f(x+y)=f(x)+f(y)------(1)  ∀  x,y ∈ R

Now, let us assume f(1)=k

Also,

  • f(0)=0

(  Since,

f(0)=f(0+0)

i.e.

f(0)=f(0)+f(0)

By using property (1)

Also,

f(0)=2f(0)

i.e.

2f(0)-f(0)=0

i.e.

f(0)=0  )

Also,

  • f(2)=f(1+1)

i.e.

f(2)=f(1)+f(1)         ( By using property (1) )

i.e.

f(2)=2f(1)

i.e.

f(2)=2k

  • Similarly for any m ∈ N

f(m)=f(1+1+1+...+1)

i.e.

f(m)=f(1)+f(1)+f(1)+.......+f(1) (m times)

i.e.

f(m)=mf(1)

i.e.

f(m)=mk

Now,

f(1)=f(\dfrac{1}{n}+\dfrac{1}{n}+.......+\dfrac{1}{n})=f(\dfrac{1}{n})+f(\dfrac{1}{n})+....+f(\dfrac{1}{n})\\\\\\i.e.\\\\\\f(\dfrac{1}{n}+\dfrac{1}{n}+.......+\dfrac{1}{n})=nf(\dfrac{1}{n})=f(1)=k\\\\\\i.e.\\\\\\f(\dfrac{1}{n})=k\cdot \dfrac{1}{n}

Also,

  • when x∈ Q

i.e.  x=\dfrac{p}{q}

Then,

f(\dfrac{p}{q})=f(\dfrac{1}{q})+f(\dfrac{1}{q})+.....+f(\dfrac{1}{q})=pf(\dfrac{1}{q})\\\\i.e.\\\\f(\dfrac{p}{q})=p\dfrac{k}{q}\\\\i.e.\\\\f(\dfrac{p}{q})=k\dfrac{p}{q}\\\\i.e.\\\\f(x)=kx\ for\ all\ x\ belongs\ to\ Q

(

Now, as we know that:

Q is dense in R.

so Э x∈ Q' such that Э a seq belonging to Q such that:

\to x )

Now, we know that: Q'=R

This means that:

Э α ∈ R

such that Э sequence a_n such that:

a_n\ belongs\ to\ Q

and

a_n\to \alpha

f(a_n)=ka_n

( since a_n belongs to Q )

Let f is continuous at x=α

This means that:

f(a_n)\to f(\alpha)\\\\i.e.\\\\k\cdot a_n\to f(\alpha)\\\\Also\\\\k\cdot a_n\to k\alpha

This means that:

f(\alpha)=k\alpha

                       This means that:

                    f(x)=kx for every x∈ R

4 0
3 years ago
A line has a slope of 5 and passes through the point
podryga [215]

Answer:

Step-by-step explanation:

The equation is mx+b=y.

M=slope (in this case 5)

x=x coordinates

b=y intercept

y=y coordinates

For the x and y coordinates, I'll use (2,0).

5(2)+_=0

10+_=0.

In this case, we only have one awnser, -10. Since 10+(-10) are the only ways to equal 0.

Hope this helps,

5 0
3 years ago
5. Use the rules for long division to divide 262 by 9. A. 29r1 B. 28 C. 30 D. 29
vfiekz [6]
Since 270=262+8, and \dfrac{270}9=30, we have

\dfrac{270}9=\dfrac{262}9+\dfrac89
\implies30-\dfrac89=\dfrac{262}9
\implies29+\dfrac19=\dfrac{262}9

so the answer is A.

6 0
3 years ago
Other questions:
  • Angles A and B are complementary angles in a right triange. The value of cos(A) is 12/13. What is the value of Tan(A)
    13·1 answer
  • Find the slope of (1,1) and (3,1)
    8·1 answer
  • Make up a rhyme (15 words or more) using the words "Function", "Binomial", and "Polynomial".​
    9·2 answers
  • Which of the following is equivalent to 180 centimeters?
    11·2 answers
  • Three polynomials are factored below, but some coefficients and constants are missing. All of the missing values of a, b, c, and
    9·1 answer
  • GIVING BRAINLIEST!!!! Pls help :(
    15·1 answer
  • 2x - 5 + ¾ (4x - 8) =19
    15·1 answer
  • Charlie wants to order lunch for his friends. He'll order 6 sandwiches and a $2
    7·1 answer
  • Brandon has purchased a home for $352,000. He made a 15% down payment and financed the remaining amount. The intangible tax is 0
    14·1 answer
  • What is the volume, in cubic meters of the prism below?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!