Answer:
All of the above are true
Explanation:
Organisms possess two types of genome viz; prokaryotic genome and eukaryotic genome. The eukaryotic genome is possessed by cells with a well-defined nucleus, where their genetic material (DNA). The prokaryotic genome, on the other hand, lacks a membrane-bound nucleus. The major organization or content between these two genomes are:
- Prokaryotic genomes generally have less DNA and fewer genes than eukaryotic genomes.
- Prokaryotic genomes have fewer repeated sequences and noncoding, intragenic sequences than eukaryotic genomes.
- Most prokaryotic genomes are contained in one circular chromosome while most eukaryotic genomes are contained on several linear chromosomes.
- In general, eukaryotic genomes contain many introns, repeated sequences, and transposable elements.
Based on this, all of the above options are TRUE
Answer:
The order must be K2→K1, since the permanently active K1 allele (K1a) is able to propagate the signal onward even when its upstream activator K2 is inactive (K2i). The reverse order would have resulted in a failure to signal (K1a→K2i), since the permanently active K1a kinase would be attempting to activate a dead K2i kinase.
Explanation:
- You characterize a double mutant cell that contains K2 with type I mutation and K1 with type II
mutation.
- You observe that the response is seen even when no extracellular signal is provided.
- In the normal pathway, i f K1 activat es K2, we expect t his combinat ion of two m utants to show no response with or without ext racell ular signal. This is because no matt er how active K1 i s, it would be unable to act ivate a mutant K2 that i s an activit y defi cient. If we reverse the order, K2 activating K1, the above observati on is valid. Therefore, in the normal signaling pathway, K2 activates K1.
DNA is condensed by a certain amount just on its own, just by its own interactions within the DNA molecule,..but whne proteins get involved it gets condensed 30000 fold
<span>what happens is that proteins called histones are like hockey pucks, and DNA wraps around it 1.5 times and then goes to another histone and wraps around that so that it looks like beads on a string (i hope that makes sense, its the only way to describe it) </span>
<span>these histones condense this DNA a lot, and when the histones get methylated then the DNA packs together even closer to get heterochromatin (VERY densely packed DNA)...the theory here is that DNA has a net negative charge due to the phosphate groups in the DNA backbone and doesnt allow the DNA to come together as closely as it could (like charges repel like charges), but when histones are methylated, the negative charge on the DNA is masked by the methyl groups and DNA can come together closer </span>
Answer: A star that collaspes is called a neutron star
Explanation: Have a great day! ;)
C is a combustion reaction