1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ArbitrLikvidat [17]
3 years ago
14

Geometry PEOPLE HELP

Mathematics
1 answer:
White raven [17]3 years ago
6 0

Answer: second option.

Step-by-step explanation:

Given the transformation T:(x,y)→(x-5,y+3)

 You must substitute the x-coordinate of the point A (which is x=2) and the y-coordinate of the point A (which is y=-1) into (x-5,y+3) to find the x-coordinate and the y-coordinate of the image of the point A.

Therefore, you get that the image of A(2,-1) is the following:

(x-5,y+3)=(2-5,-1+3)=(-3,2)

You can observe that this matches with the second option.

You might be interested in
Need this quick!!!
Leya [2.2K]

A function assigns the values. The correct option is graph X.

<h3>What is a Function?</h3>

A function assigns the value of each element of one set to the other specific element of another set.

The function which is giving a constant term is the graph on the right, while the function where the value of x increases to positive infinity is the upper graph.

Hence, the correct option is graph X.

Learn more about Function:

brainly.com/question/5245372

#SPJ1

7 0
2 years ago
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
The amount $180.00 is what percent greater than $135.00? A. 35% B. 133.33% C. 33.33% D. 25% Mark for review (Will be highlighted
Ivahew [28]
D.) 25% is the answer
8 0
3 years ago
-9≥2/5m+7 Please help T^T
vova2212 [387]

Answer:

[−5,5]

Step-by-step explanation:

6 0
3 years ago
Bill works for a large food service company. In one hour he can make 19 sandwiches or he can make 40 salads. Bill works 7 hours
wolverine [178]

Answer:

x=216 salads

Step-by-step explanation:

One Hour:

Salad=40

Sandwich=19

Total work timeT=7

Generally

Time to make 30 sandwiches is

T_s=\frac{30}{19}

T-s=1.6hours

Therefore

Bill has 7-1.6 hours to make salads and can make x about of salads in

x=(7-1.6)*40

x=5.4*40

x=216 salads

7 0
3 years ago
Other questions:
  • How do you solve this problem?
    7·1 answer
  • Anyone can help solve this without algebra ASAP? Urgent... Tysm
    10·1 answer
  • In 1992, the population of Seoul. South Korea was 17,334,000. In 1995, the population of Seoul was 19,065,000. Find the average
    7·1 answer
  • 5/7 divided by ?/? = 3/10
    7·1 answer
  • The steps below show the incomplete solution to find the value of x for the equation
    13·2 answers
  • In Raul's Neighborhood, the number of dog owners is 4 less than twice the number of cat owners. If 16 people own a dog, how many
    10·2 answers
  • HELP ME PLEASE AHHHHH!!!
    7·1 answer
  • 2350000000 in standard form
    9·1 answer
  • PLZ HELP I WILL MARK BRAINIEST (26+4) divided by 6 = w
    6·2 answers
  • In one week, a grocer sells peaches to 20% of her customers. If 480 customers purchase peaches, how many total customers does th
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!