Answer:
2.1056L or 2105.6mL
Explanation:
We'll begin by calculating the number of mole in 10g of Na2CO3. This can be obtained as follow:
Molar mass of Na2CO3 = (23x2) + 12 + (16x3) = 106g/mol
Mass of Na2CO3 = 10g
Mole of Na2CO3 =.?
Mole = mass /molar mass
Mole of Na2CO3 = 10/106
Mole of Na2CO3 = 0.094 mole
Next, we shall determine the number of mole CO2 produced by the reaction of 0.094 mole of Na2CO3. This is illustrated below:
Na2CO3 + 2HCl —> 2NaCl + H2O + CO2
From the balanced equation above,
1 mole of Na2CO3 reacted to produce 1 mole of CO2.
Therefore, 0.094 mole of Na2CO3 will also react to 0.094 mole of CO2.
Next, we shall determine the volume occupied by 0.094 mole of CO2 at STP. This is illustrated below:
1 mole of a gas occupy 22.4L at STP. This implies that 1 mole CO2 occupies 22.4L at STP.
Now, if 1 mole of CO2 occupy 22.4L at STP, then, 0.094 mole of CO2 will occupy = 0.094 x 22.4 = 2.1056L
Therefore, the volume of CO2 produced is 2.1056L or 2105.6mL
Answer:
A catalytic converter is a device used to reduce the emissions from an internal combustion engine (used in most modern day automobiles and vehicles). Not enough oxygen is available to oxidize the carbon fuel in these engines completely into carbon dioxide and water; thus toxic by-products are produced. Catalytic converters are used in exhaust systems to provide a site for the oxidation and reduction of toxic by-products (like nitrogen oxides, carbon monoxide, and hydrocarbons) of fuel into less hazardous substances such as carbon dioxide, water vapor, and nitrogen gas.
An example would be iodine has a lower relative atomic mass than tellurium, so it should come before tellurium in Mendeleev's table. In order to get iodine in the same group as the other elements with similar properties such as fluorine, chlorine, and bromine, he had to put it after tellurium, which broke his own rules.
CCAUCG is the nucleotide sequence of an mrna strand that has been transcribed from the dna sequence ggtagc.
<h3>
What is a nucleotide sequence?</h3>
- Transfer RNAs interact with the ribosome system to translate a nucleic acid sequence, known as a messenger RNA or mRNA, into the protein it encodes.
- Transfer RNAs partition the nucleic acid sequence into triplet codons, each of which specifies one amino acid, by binding to three nucleotides at once.
- The sequence does not contain punctuation signals to indicate which reading frame should be used, hence the nucleic acid can be read in three different phases or reading frames depending on the point at which division into codons begins.
- An addition or deletion in the nucleic acid sequence that changes the translation process from one reading frame to another is known as a frameshift mutation.
To know more about the nucleotide sequence, refer:
brainly.com/question/13540269
#SPJ4