1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tia_tia [17]
3 years ago
9

Or which equation would x = 4 be a solution?

Mathematics
1 answer:
ElenaW [278]3 years ago
6 0

2x+7=22\ \ \ \ |-7\\2x=15\ \ \ \ \ |:2\\x=7.4\neq4\\----------------------\\6x\div8=3\ \ \ \ |\cdot8\\6x=24\ \ \ \ |:6\\x=4\\-------------------\\8-3x=20\ \ \ \ |-8\\-3x=12\ \ \ \ |:(-3)\\x=-4\neq4\\---------------------\\2x+8=4\ \ \ \ \ |-8\\2x=-4\ \ \ \ \ |:2\\x=-2\neq4\\\\Answer:\ 6x\div8=3

Other method.

Enter the value of x for each equation and check the equality of the pages of the equation

2x+7=22\\L=2(4)+7=8+7=15;\qquad R=22\qquad L\neq R\\\\6x\div8=3\\L=6(4)\div8=24\div8=3;\qquad R=3;\qquad L=R\\\\8-3x=20\\L=8-3(4)=8-12=-4;\qquad R=20;\qquad L\neq R\\\\2x+8=4\\L=2(4)+8=8+8=16;\qquad R=4;\qquad L\neq R

You might be interested in
These are questions 8-10 that I need to find the answer to
nadezda [96]
You don't have a picture we can help with
6 0
3 years ago
Suppose that in t months, the money you have saved is given by the equation S= 145t + 85. How many months will it take you to sa
Alecsey [184]

5.5 months it took to save

3 0
3 years ago
Two column proof:
gulaghasi [49]

Answer:

Given : BRDG is a kite that is inscribed in a circle,

With BR = RD and BG = DG

To prove : RG is a diameter

Proof:

Since, RG is the major diagonal of the kite BRDG,

By the property of kite,

∠ RBG = ∠ RDG

Also, BRDG is a cyclic quadrilateral,

Therefore, By the property of cyclic quadrilateral,

∠ RBG + ∠ RDG = 180°

⇒ ∠ RBG + ∠ RBG = 180°

⇒ 2∠ RBG = 180°

⇒ ∠ RBG = 90°

⇒ ∠ RDG = 90°

Since, Angle subtended by a diameter or semicircle on any point of circle is right angle.

⇒ RG is the diameter of the circle.

Hence, proved.

8 0
3 years ago
What is the solution set of these system5x-2y=17 and 4x-7=13?
MatroZZZ [7]

Answer:

x=5

y=4

Step-by-step explanation:

Step 1:

Let us solve for <em>x</em> using the 4x-7=13 equation by <u>isolating terms containing the variable</u>:

4x-7=13\\4x=20\\\fbox{x=5}

Great! <em>x</em> is 5... let's find <em>y</em>.

Step 2:

Since we know the value of <em>x</em>, we can use what we know to find <em>y</em> using the <u>other equation</u>:

5x-2y=17\\

<em>Given that x=5, we can </em><u><em>replace</em></u><em> x with 5</em>.

5*5-2y=17\\25-2y=17\\2y=8\\\\\fbox{y=4}

<em>I hope this helps! Let me know if you have any questions :)</em>

3 0
3 years ago
Help ASAP!!!!!!!!!!!! Show your work!!!!!!!!!!!
Mariulka [41]

Answer:

x = -0.846647 or x = -0.177346 or x = 0.841952 or x = 1.58204

Step-by-step explanation:

Solve for x:

5 x^4 - 7 x^3 - 5 x^2 + 5 x + 1 = 0

Eliminate the cubic term by substituting y = x - 7/20:

1 + 5 (y + 7/20) - 5 (y + 7/20)^2 - 7 (y + 7/20)^3 + 5 (y + 7/20)^4 = 0

Expand out terms of the left hand side:

5 y^4 - (347 y^2)/40 - (43 y)/200 + 61197/32000 = 0

Divide both sides by 5:

y^4 - (347 y^2)/200 - (43 y)/1000 + 61197/160000 = 0

Add (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000 to both sides:

y^4 + (sqrt(61197) y^2)/200 + 61197/160000 = (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000

y^4 + (sqrt(61197) y^2)/200 + 61197/160000 = (y^2 + sqrt(61197)/400)^2:

(y^2 + sqrt(61197)/400)^2 = (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000

Add 2 (y^2 + sqrt(61197)/400) λ + λ^2 to both sides:

(y^2 + sqrt(61197)/400)^2 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2

(y^2 + sqrt(61197)/400)^2 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (y^2 + sqrt(61197)/400 + λ)^2:

(y^2 + sqrt(61197)/400 + λ)^2 = (43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2

(43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (2 λ + 347/200 + sqrt(61197)/200) y^2 + (43 y)/1000 + (sqrt(61197) λ)/200 + λ^2:

(y^2 + sqrt(61197)/400 + λ)^2 = y^2 (2 λ + 347/200 + sqrt(61197)/200) + (43 y)/1000 + (sqrt(61197) λ)/200 + λ^2

Complete the square on the right hand side:

(y^2 + sqrt(61197)/400 + λ)^2 = (y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)))^2 + (4 (2 λ + 347/200 + sqrt(61197)/200) (λ^2 + (sqrt(61197) λ)/200) - 1849/1000000)/(4 (2 λ + 347/200 + sqrt(61197)/200))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 347/200 + sqrt(61197)/200) (λ^2 + (sqrt(61197) λ)/200) - 1849/1000000 = (8000000 λ^3 + 60000 sqrt(61197) λ^2 + 6940000 λ^2 + 34700 sqrt(61197) λ + 6119700 λ - 1849)/1000000 = 0.

Thus the root λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + sqrt(61197)/400 + λ)^2 = (y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)))^2

Take the square root of both sides:

y^2 + sqrt(61197)/400 + λ = y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)) or y^2 + sqrt(61197)/400 + λ = -y sqrt(2 λ + 347/200 + sqrt(61197)/200) - 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200))

Solve using the quadratic formula:

y = 1/40 (sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) + sqrt(2) sqrt(347 - sqrt(61197) - 400 λ + 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) or y = 1/40 (sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) - sqrt(2) sqrt(347 - sqrt(61197) - 400 λ + 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) or y = 1/40 (sqrt(2) sqrt(347 - sqrt(61197) - 400 λ - 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197))) - sqrt(2) sqrt(400 λ + 347 + sqrt(61197))) or y = 1/40 (-sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) - sqrt(2) sqrt(347 - sqrt(61197) - 400 λ - 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) where λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3))

Substitute λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3)) and approximate:

y = -1.19665 or y = -0.527346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x - 7/20 = -1.19665 or y = -0.527346 or y = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or y = -0.527346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x - 7/20 = -0.527346 or y = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or x = -0.177346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x = -0.177346 or x - 7/20 = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or x = -0.177346 or x = 0.841952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x = -0.177346 or x = 0.841952 or x - 7/20 = 1.23204

Add 7/20 to both sides:

Answer: x = -0.846647 or x = -0.177346 or x = 0.841952 or x = 1.58204

3 0
3 years ago
Other questions:
  • Ralph and Jody go to the store to buy chips and candy bars. Ralph buys 3 bags of potato chips and 4 candy bars for 375 cents. Jo
    12·1 answer
  • Trigonometry help? Please answer 4.5,6 for me if u can! Tysm
    11·1 answer
  • Last saturday, the museum box office sold 281 tickets for a total of $3,954. Adult tickets cost $15, and student tickets cost $1
    15·1 answer
  • Place these numbers in order from smallest to largest:<br><br> -3, 6, 3.1, -2.5,1/4 ,-3/4 , -3/8
    6·1 answer
  • Which is closest to the mean number ??
    15·1 answer
  • Im struggling and need help fast please show work and tell me how to do it. no links
    8·1 answer
  • Which of the following theorems verifies that LMN = ABC
    14·1 answer
  • 9. Given a circle with a radius of 6, determine its sector area with an angle measure of 120°.
    9·1 answer
  • Hillsboro Middle School has 714 students. Joanna surveys a random sample of 34 students and finds that 9 of them play a musical
    8·1 answer
  • A carpenter lays 18 square feet of tiles in 2/3 of an hour. How many square feet of tile does the carpenter lay per hour?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!