The answer is: " 32a² − 24a − 8 " .
__________________________________________________
Given:
__________________________________________________
(8a − 8)(4a + 1) ; Let us expand this expression using the: "FOIL" method.
___________________________________________________
"FOIL" stands for "<u>F</u>irst terms, <u>O</u>uter terms, <u> I</u>nner Terms, <u>L</u>ast Terms" ;
in that order.
___________________________________________________
Basically:
_______________________________________________________
(a + b)(c + d) = ac + ad + bc + bd ;
in which the:
<u>F</u>irst term is: "ac" ;
<u>O</u>uter term is: "ad" ;
<u>I </u>nner term is: "bc" ;
<u>L</u>ast term is: "bd " .
__________________________________
So; we have (given):
(8a − 8)(4a + 1) ;
__________________________________________________
Let's take the "<u>F</u>irst, <u>O</u>uter, <u> </u><u>I</u>nner, and <u>L</u>ast terms" ; as follows:
__________________________________________________
<u>F</u>: (8a)*(4a) = 32a² ;
__________________________________________________
<u>O</u>: (8a)*(1) = 8a ;
__________________________________________________
<u>I </u>: (-8)*(4a) = -32a ;
__________________________________________________
<u>L</u>: (-8)*(1) = -8
__________________________________________________
Now, let us write out these terms:
__________________________________________________
32a² + 8a − 32a - 8 ;
__________________________________________________
Now, combine the "like terms" in this expression; to simplify:
+ 8a − 32a = -24a ;
__________________________________________________
and rewrite the simplified expression ; which is:
__________________________________________________
32a² − 24a − 8 .
______________________________________________________
Answer:
15 per hour
Step-by-step explanation:
120 people / 8 hours = 15 peeps per hour!
Answer:
Probability=0.8413
So option A is correct.
Step-by-step explanation:
In order to find the probability that the criminologist will classify all of them as delinquents, we will proceed as following:
We are required to find:
P(m>=75|m-N(80,5))
it can be written as:
1-P(m<75|m-N(80,5))
P(m<75|m-N(80,5)) can be solved as
Z=(75-80)/5
Z=-1
Probability = 1-Z(-1)
Fromm distribution table:
Probability=1-0.15866
Probability=0.8413
So option A is correct.