The slope is 2 i’m pretty sure
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> )
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> ) × (-1 + <em>i</em> ) / (-1 + <em>i</em> )
<em>z</em> = (3<em>i</em> × (-1 + <em>i</em> )) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3<em>i</em> + 3<em>i</em> ²) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3 - 3<em>i </em>) / (1 - (-1))
<em>z</em> = (-3 - 3<em>i </em>) / 2
Note that this number lies in the third quadrant of the complex plane, where both Re(<em>z</em>) and Im(<em>z</em>) are negative. But arctan only returns angles between -<em>π</em>/2 and <em>π</em>/2. So we have
arg(<em>z</em>) = arctan((-3/2)/(-3/2)) - <em>π</em>
arg(<em>z</em>) = arctan(1) - <em>π</em>
arg(<em>z</em>) = <em>π</em>/4 - <em>π</em>
arg(<em>z</em>) = -3<em>π</em>/4
where I'm taking arg(<em>z</em>) to have a range of -<em>π</em> < arg(<em>z</em>) ≤ <em>π</em>.
Answer:
5 and -4.5
Step-by-step explanation:
10/2= 5 -9/2 = -4.5
I really hope this helps
Answer:
6 n + 6 b + 1
Step-by-step explanation:
Simplify the following:
11 b - 7 - 3 n + 8 - 5 b + 9 n
Grouping like terms, 11 b - 7 - 3 n + 8 - 5 b + 9 n = (9 n - 3 n) + (11 b - 5 b) + (8 - 7):
(9 n - 3 n) + (11 b - 5 b) + (8 - 7)
9 n - 3 n = 6 n:
6 n + (11 b - 5 b) + (8 - 7)
11 b - 5 b = 6 b:
6 n + 6 b + (8 - 7)
8 - 7 = 1:
Answer: 6 n + 6 b + 1
Answer: a) 490.91 mph
b) 540 mph
c) speed of the wind = 49.1 mph
Step-by-step explanation:
Given that flight between Joppetown and Jawsburgh took 5 hours and 30 minutes.
Time t = 5.5hours
Distance = 2700 miles
Speed = distance/ time
Speed = 2700/5.5
Speed = 490.91 mph
The return flight took 5 hours of the same distance from = 2700 miles
Speed = 2700/5 = 540 mph
speed of the wind = the difference in the two speed
speed of the wind = 450 - 490.91
speed of the wind = 49.1 mph
Speed = 540m/s