Answer:
0.0803 = 8.03% probability that the number who have a high school degree as their highest educational level is exactly 32.
Step-by-step explanation:
For each adult, there are only two possible outcomes. Either they have a high school degree as their highest educational level, or they do not. The probability of an adult having it is independent of any other adult. This means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
30.4% of U.S. adults 25 years old or older have a high school degree as their highest educational level.
This means that 
100 such adults
This means that 
Determine the probability that the number who have a high school degree as their highest educational level is a. Exactly 32
This is P(X = 32).


0.0803 = 8.03% probability that the number who have a high school degree as their highest educational level is exactly 32.
Sure this question comes with a set of answer choices.
Anyhow, I can help you by determining one equation that can be solved to determine the value of a in the equation.
Since, the two zeros are - 4 and 2, you know that the equation can be factored as the product of (x + 4) and ( x - 2) times a constant. This is, the equation has the form:
y = a(x + 4)(x - 2)
Now, since the point (6,10) belongs to the parabola, you can replace those coordintates to get:
10 = a (6 + 4) (6 - 2)
Therefore, any of these equivalent equations can be solved to determine the value of a:
10 = a 6 + 40) (6 -2)
10 = a (10)(4)
10 = 40a
(Credit to guy/girl above) 63 miles 10 1/2 x 6 is 63.
Answer:
x=4-3y
Step-by-step explanation:
Answer:
less than
Step-by-step explanation:
the square root of 2 is 4 and 5/4 is 1.25