ANSWER

EXPLANATION
The circumference of a circle is calculated using the formula:

where r=11 meters is the radius of the circle.
Let us substitute the radius into the formula to obtain,

This simplifies to:

When we substitute

We get

to the nearest hundredth.
Answer: Solving for f. Want to solve for x instead?
1 Remove parentheses.
f\times -2fx=3{x}^{2}-8x+7f×−2fx=3x
2
−8x+7
2 Use Product Rule: {x}^{a}{x}^{b}={x}^{a+b}x
a
x
b
=x
a+b
.
-{f}^{2}\times 2x=3{x}^{2}-8x+7−f
2
×2x=3x
2
−8x+7
3 Regroup terms.
-2{f}^{2}x=3{x}^{2}-8x+7−2f
2
x=3x
2
−8x+7
4 Divide both sides by -2−2.
{f}^{2}x=-\frac{3{x}^{2}-8x+7}{2}f
2
x=−
2
3x
2
−8x+7
5 Divide both sides by xx.
{f}^{2}=-\frac{\frac{3{x}^{2}-8x+7}{2}}{x}f
2
=−
x
2
3x
2
−8x+7
6 Simplify \frac{\frac{3{x}^{2}-8x+7}{2}}{x}
x
2
3x
2
−8x+7
to \frac{3{x}^{2}-8x+7}{2x}
2x
3x
2
−8x+7
.
{f}^{2}=-\frac{3{x}^{2}-8x+7}{2x}f
2
=−
2x
3x
2
−8x+7
7 Take the square root of both sides.
f=\pm \sqrt{-\frac{3{x}^{2}-8x+7}{2x}}f=±√
−
2x
3x
2
−8x+7
8 Simplify \sqrt{-\frac{3{x}^{2}-8x+7}{2x}}√
−
2x
3x
2
−8x+7
to \sqrt{\frac{3{x}^{2}-8x+7}{2x}}\imath√
2x
3x
2
−8x+7
ı.
f=\pm \sqrt{\frac{3{x}^{2}-8x+7}{2x}}\imathf=±√
2x
3x
2
−8x+7
ı
9 Regroup terms.
f=\pm \imath \sqrt{\frac{3{x}^{2}-8x+7}{2x}}f=±ı√
2x
3x
2
−8x+7
Done- :)
f=±ı√ 2x 3x 2 −8x+7
Step-by-step explanation
Answer:
(2,-2)
Step-by-step explanation:
since the solution area is the shaded and dotted area, just plot the coordinates listed and see if they land in that space. by doing that, your answer should be the only one in that area: (2,-2)
Answer:
-4 < x < 2
Step-by-step explanation:
- -4 is where the first point begins.
-4
- since the point is "open", aka not shaded, it should be "<"
-4 <
- we now have to insert the given variable, x
-4 < x
- the second, ending point, is also "open"
-4 < x <
- the ending point lands on 2
-4 < x < 2
hopefully this answers your question. but a little fyi, this is simply the way i learned it, so it may/may not be what you exactly need :)