Find the eccentricity of the ellipse
4x^2 +16y^2 +32x-32y+16=0
1 answer:
4x² + 16y² + 32x - 32y + 16 = 0
<u> - 16 - 16</u>
4x² + 16y² + 32x - 32y = -16
4x² + 32x + 16y² - 32y = -16
4(x² + 8x + 16) + 16(y² - 2y + 1) = -16 + 4(16) + 16(1)
4(x + 4)² + 16(y - 1)² = -16 + 64 + 16
4(x + 4)² + 16(y - 1)² = 48 + 16
<u>4(x + 4)²</u> + <u>16(y - 1)²</u> = <u>64</u>
64 64 64
<u>(x + 4)²</u> + <u>(y - 1)²</u> = 1
16 2
You might be interested in
Answer:
500043004030405.3
Step-by-step explanation:
1st you combine like terms so subtract 7y and 3y and you get 4y. So this is the final answer: 4y+4b.
Answer:
27:18.
Step-by-step explanation:
27/9 = 3
18/9 = 2