Answer:
<u>ALTERNATIVE 1</u>
a. Find the profit function in terms of x.
P(x) = R(x) - C(x)
P(x) = (-60x² + 275x) - (50000 + 30x)
P(x) = -60x² + 245x - 50000
b. Find the marginal cost as a function of x.
C(x) = 50000 + 30x
C'(x) = 0 + 30 = 30
c. Find the revenue function in terms of x.
R(x) = x · p
R(x) = x · (275 - 60x)
R(x) = -60x² + 275x
d. Find the marginal revenue function in terms of x.
R'(x) = (-60 · 2x) + 275
R'(x) = -120x + 275
The answers do not make a lot of sense, specially the profit and marginal revenue functions. I believe that the question was not copied correctly and the price function should be p = 275 - x/60
<u>ALTERNATIVE 2</u>
a. Find the profit function in terms of x.
P(x) = R(x) - C(x)
P(x) = (-x²/60 + 275x) - (50000 + 30x)
P(x) = -x²/60 + 245x - 50000
b. Find the marginal cost as a function of x.
C(x) = 50000 + 30x
C'(x) = 0 + 30 = 30
c. Find the revenue function in terms of x.
R(x) = x · p
R(x) = x · (275 - x/60)
R(x) = -x²/60 + 275x
d. Find the marginal revenue function in terms of x.
R(x) = -x²/60 + 275x
R'(x) = -x/30 + 275
Answer:
No
Step-by-step explanation:
The first coordinate is x and the second is y so that makes the equation 3=6 which is not true.
Answer:
(Y × 10) + X = 30
hope it helps
Step-by-step explanation:
Y = Cost of each ticket
X = cost of entry fee
so he bought 10 tickets
so you multiply cost of each ticket ( y ) by 10
then you add the entry fee ( x ) to find the total cost ( $30 )
92% just divide the numerator by the denominator
Answer:
540
Step-by-step explanation: