Answer:
first number(x) = 2 second number(y)= 6
Step-by-step explanation:
This is an example of a simultaneous equation.
First write this word problem as equations, where x is the "first number" that you've mentioned and y is the "second number".
x + 2y = 14 (equation 1)
2x + y = 10 (equation 2)
This is solved using the elimination method.
We need to make one of the coefficients the same - in this case we can make y the same. In order to do this we need to multiply equation 2 by 2, so that y becomes 2y.
2x + y = 10 MULTIPLY BY 2
4x + 2y = 20 (this is now our new equation 2 with the same y coefficient)
Now subtract equation 1 from equation 2.
4x - x + 2y - 2y = 20 - 14 (2y cancels out here)
3x = 6
x = 2
Now we substitute our x value into equation 1 to find the value of y.
2 + 2y = 14
2y = 12
y = 6
Hope this has answered your question.
Answer:
3. A single translation
Step-by-step explanation:
when you have a linear combination for example 3x + 2y equals negative 4 you adieu like terms and then multiply
Answer:
f(4) = -8
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = -x - 4
f(4) is x = 4
<u>Step 2: Evaluate</u>
- Substitute in <em>x</em>: f(4) = -4 - 4
- Subtract: f(4) = -8
Let's say g(x) = x^4 => f(g)(x) = 4*( x^4) +1.