Answer:
(a) AH < HC is No
(b) AH < AC is Yes
(c) △AHC ≅ △AHB is Yes
Step-by-step explanation:
Given
See attachment for triangle
Solving (a): AH < HC
Line AH divides the triangle into two equal right-angled triangles which are: ABH and ACH (both right-angled at H).
To get the lengths of AH and HC, we need to first determine the measure of angles HAC and ACH. The largest of those angles will determine the longest of AH and HC. Since the measure of the angles are unknown, then we can not say for sure that AH < HC because the possible relationship between both lines are: AH < HC, AH = HC and AH > HC
Hence: AH < HC is No
Solving (b): AH < AC
Length AC represents the hypotenuse of triangle ACH, hence it is the longest length of ACH.
This means that:
AH < AC is Yes
Solving (c): △AHC ≅ △AHB
This has been addresed in (a);
Hence:
△AHC ≅ △AHB is Yes
The ratio of the area of the <u>first figure</u> to the area of the <u>second figure</u> is 4:1
<h3>Ratio of the areas of similar figures </h3>
From the question, we are to determine the ratio of the area of the<u> first figure</u> to the area of the <u>second figure</u>
<u />
The two figures are similar
From one of the theorems for similar polygons, we have that
If the scale factor of the sides of <u>two similar polygons</u> is m/n then the ratio of the areas is (m/n)²
Let the base length of the first figure be ,m = 14 mm
and the base length of the second figure be, n = 7 mm
∴ The ratio of their areas will be



= 4:1
Hence, the ratio of the area of the <u>first figure</u> to the area of the <u>second figure</u> is 4:1
Learn more on Ratio of the areas of similar figures here: brainly.com/question/11920446
Answer:
The value of the constant C is 0.01 .
Step-by-step explanation:
Given:
Suppose X, Y, and Z are random variables with the joint density function,

The value of constant C can be obtained as:



![C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0{e^{-0.2y}([\frac{-e^{-0.1z} }{0.1} ]\limits^\infty__0 }) \, dy }) \, dx = 1](https://tex.z-dn.net/?f=C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5Cint%5Climits%5E%5Cinfty_0%7Be%5E%7B-0.2y%7D%28%5B%5Cfrac%7B-e%5E%7B-0.1z%7D%20%7D%7B0.1%7D%20%5D%5Climits%5E%5Cinfty__0%20%7D%29%20%5C%2C%20dy%20%20%7D%29%20%5C%2C%20dx%20%3D%201)
![C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0 {e^{-0.2y}([\frac{-e^{-0.1(\infty)} }{0.1}+\frac{e^{-0.1(0)} }{0.1} ]) } \, dy }) \, dx = 1](https://tex.z-dn.net/?f=C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.2y%7D%28%5B%5Cfrac%7B-e%5E%7B-0.1%28%5Cinfty%29%7D%20%7D%7B0.1%7D%2B%5Cfrac%7Be%5E%7B-0.1%280%29%7D%20%7D%7B0.1%7D%20%5D%29%20%20%7D%20%5C%2C%20dy%20%20%7D%29%20%5C%2C%20dx%20%3D%201)
![C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0 {e^{-0.2y}[0+\frac{1}{0.1}] } \, dy }) \, dx =1](https://tex.z-dn.net/?f=C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.2y%7D%5B0%2B%5Cfrac%7B1%7D%7B0.1%7D%5D%20%20%7D%20%5C%2C%20dy%20%20%7D%29%20%5C%2C%20dx%20%3D1)
![10C\int\limits^\infty_0 {e^{-0.5x}([\frac{-e^{-0.2y} }{0.2}]^\infty__0 }) \, dx = 1](https://tex.z-dn.net/?f=10C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5B%5Cfrac%7B-e%5E%7B-0.2y%7D%20%7D%7B0.2%7D%5D%5E%5Cinfty__0%20%20%7D%29%20%5C%2C%20dx%20%3D%201)
![10C\int\limits^\infty_0 {e^{-0.5x}([\frac{-e^{-0.2(\infty)} }{0.2}+\frac{e^{-0.2(0)} }{0.2}] } \, dx = 1](https://tex.z-dn.net/?f=10C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5B%5Cfrac%7B-e%5E%7B-0.2%28%5Cinfty%29%7D%20%7D%7B0.2%7D%2B%5Cfrac%7Be%5E%7B-0.2%280%29%7D%20%7D%7B0.2%7D%5D%20%20%20%7D%20%5C%2C%20dx%20%3D%201)
![10C\int\limits^\infty_0 {e^{-0.5x}[0+\frac{1}{0.2}] } \, dx = 1](https://tex.z-dn.net/?f=10C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%5B0%2B%5Cfrac%7B1%7D%7B0.2%7D%5D%20%20%7D%20%5C%2C%20dx%20%3D%201)
![50C([\frac{-e^{-0.5x} }{0.5}]^\infty__0}) = 1](https://tex.z-dn.net/?f=50C%28%5B%5Cfrac%7B-e%5E%7B-0.5x%7D%20%7D%7B0.5%7D%5D%5E%5Cinfty__0%7D%29%20%3D%201)
![50C[\frac{-e^{-0.5(\infty)} }{0.5} + \frac{-0.5(0)}{0.5}] =1](https://tex.z-dn.net/?f=50C%5B%5Cfrac%7B-e%5E%7B-0.5%28%5Cinfty%29%7D%20%7D%7B0.5%7D%20%2B%20%5Cfrac%7B-0.5%280%29%7D%7B0.5%7D%5D%20%3D1)
![50C[0+\frac{1}{0.5} ] =1](https://tex.z-dn.net/?f=50C%5B0%2B%5Cfrac%7B1%7D%7B0.5%7D%20%5D%20%3D1)
⇒ 
C = 0.01
In this item, we will be able to form a system of linear equation which are shown below,
292 = 400x + y
407 = 900x + y
where x is the percent of the commission that he gets and y is the wage. The values of x and y from the equations are 0.23 and 200. This means that Justin earns a fixed wage of 200 per day and a commission which is equal to 23%.
Substituting the known values to the equation,
S = (0.23)(3200) + 200 = 936.
Therefore, Justin could have earned $936 had he sold $3,200 worth of merchandise.
Answer:
B
Step-by-step explanation: