Answer:
The volume of the triangular prism is 5676.16 cm³
Step-by-step explanation:
The area of the triangular base A = bh/2 where b = base = 28 cm and h = height = 22.4 cm.
Now, the volume of the triangular prism, V = area of triangular base, A × height of prism, h'
V = Ah' where h = height of prism = 18.1 cm
So, V = bhh'/2
Substituting the values of the variables into the equation for V, we have
V = bhh'/2
V = 28 cm × 22.4 cm × 18.1 cm/2
V = 14 cm × 22.4 cm × 18.1 cm
V = 5676.16 cm³
So, the volume of the triangular prism is 5676.16 cm³
Option B gives the correct answer.The step by step solution using the FOIL method of multiplication is given below:
2/5
because if you turn 3 1/5 into an improper fraction that 16/5 divided by 8/1 equals 16/40 which when simplified equals 2/5
Answer:

Step-by-step explanation:
We can use the Law of Sines to find segment AD, which happens to be a leg of
and the hypotenuse of
.
The Law of Sines states that the ratio of any angle of a triangle and its opposite side is maintained through the triangle:

Since we're given the length of CD, we want to find the measure of the angle opposite to CD, which is
. The sum of the interior angles in a triangle is equal to 180 degrees. Thus, we have:

Now use this value in the Law of Sines to find AD:

Recall that
and
:

Now that we have the length of AD, we can find the length of AB. The right triangle
is a 30-60-90 triangle. In all 30-60-90 triangles, the side lengths are in the ratio
, where
is the side opposite to the 30 degree angle and
is the length of the hypotenuse.
Since AD is the hypotenuse, it must represent
in this ratio and since AB is the side opposite to the 30 degree angle, it must represent
in this ratio (Derive from basic trig for a right triangle and
).
Therefore, AB must be exactly half of AD:

Answer:

Step-by-step explanation:

First, let's remove parentheses:

Simplify, multiply, 4 * -2x = -8x:

** Apply rule: - ( -a )= a

Now, let's regroup terms

Add 12 to both sides:

Simplify, 4 + 12= 16

Divide both sides by 8:


<h2>
________________________</h2>