Answer:
The point estimate = 0.507
Margin error of a given confidence interval = 0.032
Step-by-step explanation:
The point estimate is calculated by using the sample statistics of a population.
Thus; point estimate can be expressed with the formula:
![\overline x = \dfrac{\sum \limits ^n _{i=1} \ x _i}{n}](https://tex.z-dn.net/?f=%5Coverline%20x%20%3D%20%5Cdfrac%7B%5Csum%20%5Climits%20%5En%20_%7Bi%3D1%7D%20%5C%20x%20_i%7D%7Bn%7D)
Given that : 0.475 < p < 0.539
![\overline x = \dfrac{0.475+0.539}{2}](https://tex.z-dn.net/?f=%5Coverline%20x%20%3D%20%5Cdfrac%7B0.475%2B0.539%7D%7B2%7D)
![\overline x = \dfrac{1.014}{2}](https://tex.z-dn.net/?f=%5Coverline%20x%20%3D%20%5Cdfrac%7B1.014%7D%7B2%7D)
![\overline x = 0.507](https://tex.z-dn.net/?f=%5Coverline%20x%20%3D%200.507)
The point estimate = 0.507
The margin of error which shows the percentage of points that the derived results would differ from that of the given population value can be calculated with the formula:
Margin error of a given confidence interval = ![\mathtt{\dfrac{upper \ confidence \ limit - lower \ confidence \ limit }{2}}](https://tex.z-dn.net/?f=%5Cmathtt%7B%5Cdfrac%7Bupper%20%5C%20confidence%20%5C%20limit%20-%20lower%20%20%5C%20confidence%20%5C%20limit%20%20%7D%7B2%7D%7D)
Margin error of a given confidence interval = ![\dfrac{0.539-0.475}{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B0.539-0.475%7D%7B2%7D)
Margin error of a given confidence interval = ![\dfrac{0.064}{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B0.064%7D%7B2%7D)
Margin error of a given confidence interval = ![0.032](https://tex.z-dn.net/?f=0.032)