Answer:Yes
Explanation:
Only if someone down their bloodline has had 3 eyes. It would be possible, but highly unlikely.
Answer: C is the right answer because the wind can cool off
Answer:
Sarcomere
Explanation:
The muscle fiber / myofibrils consist of 2 types of filaments - actin and myosin. The myosin filaments are thick filament whereas the actin filaments are the thin filament.
In addition to this, the muscles have A-band and I-bands. These bands give the muscles alternate light and dark colour band structure. In the A-band, myosin filaments are present, whereas in the I - band the actin filaments are found.
In I-band 2 Z-lines are located. The area between the Z-lines is called sarcomere. In this sarcomere region both actin and myosin filaments present.
When muscles get contracted the length of the sarcomere shorten. The actin and myosin filaments overlap in this area. A cross-bridge form between them, with the help of filamentous protein titin.
Both glycerophospholipids and sphingolipid structures are asymmetrically distributed in the two layers of the phospholipid bilayer. Sphingolipids are membrane lipids that have a ceramide backbone while glycerophospholipid has glycerol present in its membrane lipids. Sphingolipids may or may not be present.
Answer:
-1.9mL/min
Explanation:
The rate of O₂ production can be calculated by the formula
= ( Final volume - initial volume)/time(min).
From the graph provided and attached below, the rate of O₂ production or rate of photosynthesis at light intensity of 8 is about 3.75 mL/min.
The rate of O₂ production is taken as the rate of photosynthesis. It is expected to progressively increase from light intensity 0 as light intensity increases. However, at very high light intensity, the rate slows down as water becomes limiting and the stomata closes in order to conserve water.
Question in order
Experiment 2: Respiration in the Dark
Calculate the volume change for respiration in the dark. As you already saw from earlier questions,
oxygen production is fairly constant. You will not need to calculate the individual volume changes.
Just subtract the original volume at 00:00:00 from the final reading at 00:02:00. Record your answer
for use in a later question.
<em>Note: depending on when you started the timer there is a range of possible answers. Pick the answer that is closest to this</em>
What was the volume change for respiration in the dark?
Correct answer:
-1.9 mL/min