The possibile answer is 10 ÷ 6 = 1.6
Answer:
x = - 6 or x = 2
Step-by-step explanation:
The absolute value function always returns a positive value. However, the expression inside can be positive or negative.
Given
| 2x + 4 | - 1 = 7 ( add 1 to both sides )
| 2x + 4 | = 8, thus
2x + 4 = 8 ( subtract 4 from both sides )
2x = 4 ( divide both sides by 2 )
x = 2
OR
-(2x + 4) = 8
- 2x - 4 = 8 ( add 4 to both sides )
- 2x = 12 ( divide both sides by - 2 )
x = - 6
As a check
Substitute these values into the left side of the equation and if equal to the right side then they are the solutions.
x = 2 → | 4 + 4 | - 1 = | 8 | - 1 = 8 - 1 = 7 ← True
x = - 6 → | - 12 + 4 | - 1 = | - 8 | - 1 = 8 - 1 = 7 ← True
Hence the solutions are x = - 6 or x = 2
To find the unit rate of a given amount, you have to divide the price by the fluid oz or amount. In this case it is 1.19 / 12. The quotient is 0.0991666667 or (rounded) $0.10.
Answer:
a. see attached
b. H(t) = 12 -10cos(πt/10)
c. H(16) ≈ 8.91 m
Step-by-step explanation:
<h3>a.</h3>
The cosine function has its extreme (positive) value when its argument is 0, so we like to use that function for circular motion problems that have an extreme value at t=0. The midline of the function needs to be adjusted upward from 0 to a value that is 2 m more than the 10 m radius. The amplitude of the function will be the 10 m radius. The period of the function is 20 seconds, so the cosine function will be scaled so that one full period is completed at t=20. That is, the argument of the cosine will be 2π(t/20) = πt/10.
The function describing the height will be ...
H(t) = 12 -10cos(πt/10)
The graph of it is attached.
__
<h3>b. </h3>
See part a.
__
<h3>c.</h3>
The wheel will reach the top of its travel after 1/2 of its period, or t=10. Then 6 seconds later is t=16.
H(16) = 12 -10cos(π(16/10) = 12 -10cos(1.6π) ≈ 12 -10(0.309017) ≈ 8.90983
The height of the rider 6 seconds after passing the top will be about 8.91 m.