1.
where in a population:
p - the frequency of the <em>A</em> allele
q - the frequency of the <em>a</em> allele
- the frequency of the <em>AA</em> homozygous genotype
- the frequency of the <em>aa</em> homozygous genotype
2pq - the frequency of the <em>Aa</em> heterozygous genotype
A population at equilibrium will have the sum of all the alleles at the locus equal to 1.
2. Conditions:
A. The breeding population must be large
B. No natural selection
C. The mating must occur randomly
D. No mutations to cause changes in allelic frequency.
E. No changes in allelic frequency due to immigration or emigration.
3. By comparing the actual genetic structure of a population with what we would expect from a Hardy-Weinberg equilibrium, we can determine how much it deviates from the baseline provided by the mathematical model. Depending on how large the deviation is, one or more of the model's assumptions are being violated. Thus, we can attempt to determine which one.
The process of photosynthesis occurs when green plants use the energy of light to convert carbon dioxide (CO2) and water (H2O) into carbohydrates. Light energy is absorbed by chlorophyll, a photosynthetic pigment of the plant, while air containing carbon dioxide and oxygen enters the plant through the leaf stomata.
Answer:
besh cornerhiiiiiiiiiiiiiiiii
The answer is guard cells.
Guard cells are cells surrounding each stoma. They help regulate the rate of transpiration by opening and closing the stomata. They are specialized cells in the epidermis of leaves, stems and other organs that are used to control gas exchange. They are produced in pairs with a gap between them that forms a stomatal pore (stoma).