1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jekas [21]
3 years ago
8

Explain how measurements taken by standard rulers and scales are limited.

Mathematics
1 answer:
Serjik [45]3 years ago
4 0

Answer:

A standard ruler is 12-inches long and 30 centimeters in length. It is likely your ruler will state “inches” or “cm” to make it easier to tell which side is which. Each of these measurements has a perpendicular line to denote where this measurement falls on the ruler. They are the longest lines on the ruler.

You might be interested in
Select the correct answer.
Effectus [21]

Answer:c

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
What is 4million 2hunderd thousand 6 hundred 52 in digitss​
julsineya [31]

Answer:

one thousand, seven hundred twenty-eight

7 0
3 years ago
Suppose integral [4th root(1/cos^2x - 1)]/sin(2x) dx = A<br>What is the value of the A^2?<br><br>​
Alla [95]

\large \mathbb{PROBLEM:}

\begin{array}{l} \textsf{Suppose }\displaystyle \sf \int \dfrac{\sqrt[4]{\frac{1}{\cos^2 x} - 1}}{\sin 2x}\ dx = A \\ \\ \textsf{What is the value of }\sf A^2? \end{array}

\large \mathbb{SOLUTION:}

\!\!\small \begin{array}{l} \displaystyle \sf A = \int \dfrac{\sqrt[4]{\frac{1}{\cos^2 x} - 1}}{\sin 2x}\ dx \\ \\ \textsf{Simplifying} \\ \\ \displaystyle \sf A = \int \dfrac{\sqrt[4]{\sec^2 x - 1}}{\sin 2x}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\sqrt[4]{\tan^2 x}}{\sin 2x}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\sqrt{\tan x}}{\sin 2x}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\sqrt{\tan x}}{\sin 2x}\cdot \dfrac{\sqrt{\tan x}}{\sqrt{\tan x}}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\tan x}{\sin 2x\ \sqrt{\tan x}}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\dfrac{\sin x}{\cos x}}{2\sin x \cos x \sqrt{\tan x}}\ dx\:\:\because {\scriptsize \begin{cases}\:\sf \tan x = \frac{\sin x}{\cos x} \\ \: \sf \sin 2x = 2\sin x \cos x \end{cases}} \\ \\ \displaystyle \sf A = \int \dfrac{\dfrac{1}{\cos^2 x}}{2\sqrt{\tan x}}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\sec^2 x}{2\sqrt{\tan x}}\ dx, \quad\begin{aligned}\sf let\ u &=\sf \tan x \\ \sf du &=\sf \sec^2 x\ dx \end{aligned} \\ \\ \textsf{The integral becomes} \\ \\ \displaystyle \sf A = \dfrac{1}{2}\int \dfrac{du}{\sqrt{u}} \\ \\ \sf A= \dfrac{1}{2}\cdot \dfrac{u^{-\frac{1}{2} + 1}}{-\frac{1}{2} + 1} + C = \sqrt{u} + C \\ \\ \sf A = \sqrt{\tan x} + C\ or\ \sqrt{|\tan x|} + C\textsf{ for restricted} \\ \qquad\qquad\qquad\qquad\qquad\qquad\quad \textsf{values of x} \\ \\ \therefore \boxed{\sf A^2 = (\sqrt{|\tan x|} + c)^2} \end{array}

\boxed{ \tt   \red{C}arry  \: \red{ O}n \:  \red{L}earning}  \:  \underline{\tt{5/13/22}}

4 0
2 years ago
Write 0.000012001 in scientific notation. 0.000012001 =​
LUCKY_DIMON [66]

Answer:

<em>The answer is 1.2001 * 10^-5</em>

8 0
3 years ago
Each week you deposit money in a savings account. The first week you deposit $8 in the account. Each week you deposit $2 more th
rjkz [21]

first you do 8×12=92 then you do 92+2=94 94×12=1,128 so you save1,128 if I'm not wrong

8 0
3 years ago
Other questions:
  • PLZ HELP!!!! thanks!!!
    12·1 answer
  • Un dreptunghi are perimetrul 420m. Lungimea este de 4ori mai mare decât latimea. Aflati lungimea si latimea dreptunghiului?
    5·1 answer
  • Is 11/20 less or greater than half
    15·2 answers
  • Alexis drove 1200 miles in 30 h. What was her rate of travel in miles per hour?
    5·2 answers
  • Help please!!!! Complete the following
    13·1 answer
  • Homework Progress
    6·2 answers
  • Triangle<br> a = 5, b = 10, c =
    7·2 answers
  • Five students bought supplies. Three students each bought 3 pencils and an eraser. Two students each bought a pen and 2 pencils.
    9·1 answer
  • Help i need for tomorrow
    9·1 answer
  • a lump sum of $2000 is invested at 4.2% compounded continuously. (a) write the function for the model that gives the future valu
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!