Step-by-step explanation:
Given : m∥n , ∠1= 50° , ∠2= 48° , and line s bisects ∠ABC
To prove = ∠3= 49°
Solution:
In figure, m∥n cut by traversal t.
So, ∠DEF = ∠ABC(alternative exterior angles)
∠1 + ∠2 = ∠4 + ∠5
∠ABC = ∠1 + ∠2 = 50° + 48° = 98°
Also given that s bisect angles ∠ABC.
∠4 = ∠5
∠ABC = ∠4 + ∠5 = 98°
∠4 + ∠4 = 98°
2∠4 = 98°
∠4 = 49°
∠4= ∠3 = 49° (vertically opposite angles)
∠3 = 49° ,hence proved
400g=.4kg
.4kg×25p/1kg=10p
I think it’s a... I think it’s a carrot
Answer:
5.266 secs
Step-by-step explanation:
Lets assume ; p(t) = t^-3 + 2^2 + ( 3/2 ) is the particle position along x-axis
time interval [ 0, 4 ]
Average velocity = Displacement / time
= p( b ) - p( a ) / b - a -------- ( 1 )
where a = 0 , b = 4 ( time intervals )
Back to equation 1
Average velocity = [ ( 4^-3 + 4 + (3/2) ) - ( 0 + 4 + (3/2) ) ] / 4
= 3.9 * 10^-3 ----- ( 2 )
Instantaneous velocity = d/dx p(t)
= - 3/t^4 ------ ( 3 )
To determine the time that the instanteous velocity = average velocity
equate equations (2) and (3)
3.9*10^-3 = - 3 / t^4
t^4 = - 3 / ( 3.9 * 10^-3 ) = - 769.231
hence t =
= 5.266 secs
we ignore the negative sign because time can not be in the negative
Okay the answer is 3 3/4, 3÷4=.75 then put in the whole number and it is 3.75. 3.75 is bigger than 3.62.. so the answer is 3 3/4