Answer:
The intersection is
.
The Problem:
What is the intersection point of
and
?
Step-by-step explanation:
To find the intersection of
and
, we will need to find when they have a common point; when their
and
are the same.
Let's start with setting the
's equal to find those
's for which the
's are the same.

By power rule:

Since
implies
:

Squaring both sides to get rid of the fraction exponent:

This is a quadratic equation.
Subtract
on both sides:


Comparing this to
we see the following:



Let's plug them into the quadratic formula:




So we have the solutions to the quadratic equation are:
or
.
The second solution definitely gives at least one of the logarithm equation problems.
Example:
has problems when
and so the second solution is a problem.
So the
where the equations intersect is at
.
Let's find the
-coordinate.
You may use either equation.
I choose
.

The intersection is
.
Answer:
The square root function
sqrt(144) or √144 produces a single positive value, 12.
However if you have an equation
x² = 144, then you have two possible values for x, 12 and -12.
Two ways to look at it.
x² - 144 = 0
Difference of two squares
(x+12)(x-12) = 0
x = -12, 12
x² = 144
x = ±√144
x = ±12
x = -12, 12
Step-by-step explanation:
X-2y=5 ; 2x-4y=10
• x - 2y = 5 • 2x -4y = 10
-2y = -x+5 -4y= -2x +10
y1 = ½x - 5/2 y2 = ½x -5/2
• => y1 = y2
½x -5/2 = ½x -5/2
the systems have no solution
• graph as attached
B.

C.

D.

please mark as brainliest.