One A
y = e^x
dy/dx = e^x The f(x) = the differentiated function. Any value that e^x can have, the derivative has the same value. x is contained in all the reals.
One B
y = x*e^x
y' = e^x + xe^x Using the multiplication rule.
You want the slope and the value of the of y to be the same. The slope is y' of the tangent line
xe^x = e^x + xe^x
e^x = 0
This happens only when x is very "small" like x = - 4444444
y = e^x * ln(x) Using the multiplication rule again, we need the slope of the line with is y'
y1 = e^x
y1' = e^x
y2 = ln(x)
y2' = 1/x
y' = e^x*ln(x) + e^x/x So at x = 1 the slope of the line =
y' = e^1*ln(1) + e^1/1
y' = e*0+e = e
y = mx + b
y = ex + b
to find b we use y= e^x ln(x)
e^x ln(x) = e*x + b
e^1 ln(1) = e*1 + b
ln(1) = 0
0 = e + b
b = - e
line equation and answer.
y = e*x - e
The answer would be .5 pounds
1 ounce is equal to .0625 lbs
so 8 * .0625 = .5
hope this helps :)
brainliest???
1, a.) The two specific conjectures are in the first image.
1, b.) The two general conjectures are in the second image.
2, a.) Two specific conjectures for this pattern are:
- The common difference between two consecutive terms is 3.
- And the given difference is A.P.
2, b.) From our observation two general conjecture is that the given sequence is an arithmetic sequence and the common difference is 3.
For finding its nth term we can use the formula: a(n) = a + (n-1) x d.
2, c.) A formula for the given pattern is 5 + (n-1)3, where n is the number of the term.
Answer:
1/12
Step-by-step explanation:
Okay, so this will be a compound probability question because there are two parts to the question.
Firstly, a die has 6 sides, and there is only one chance of getting a 1, so the probability would be 1/6.
Furthermore, there are 3 different even numbers on a 6-sided die, so that is 3/6, which can be simplified to 1/2.
Now, because this is a compound probability, we have to multiply 1/2 and 1/6 together, which would give us our answer of 1/12.
Answer:
A
Step-by-step explanation:
Put brackets around the first two tems.
y = (x^2 - 8x) + 29
Take 1/2 coefficient of the linear term -8. Square that result. Add it inside the brackets.
1/2 (- 8) = - 4
(- 4)^2 = 16
y = (x^2 - 8x + 16) + 29
Subtract 16 outside the brackets.
y = (x^2 - 8x + 16) + 29 - 16
Do the subtraction
y = (x^2 - 8x + 16) + 13
Represent what is inside the brackets as a square.
y = ( x - 4)^2 + 13
The answer is A