Answer:
y-determinant = 2
Step-by-step explanation:
Given the following system of equation:
Let's represent it using a matrix:
![\left[\begin{array}{ccc}1&2\\1&-3\end{array}\right] = \left[\begin{array}{ccc}5\\7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%5C%5C1%26-3%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C7%5Cend%7Barray%7D%5Cright%5D)
The y‐numerator determinant is formed by taking the constant terms from the system and placing them in the y‐coefficient positions and retaining the x‐coefficients. Then:
![\left[\begin{array}{ccc}1&5\\1&7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%265%5C%5C1%267%5Cend%7Barray%7D%5Cright%5D%20)
y-determinant = (1)(7) - (5)(1) = 2.
Therefore, the y-determinant = 2
Answer:
a ) 7a + 12
b) b - 15
Step-by-step explanation:
a)2a+5a +8+8
= 7a + 12
b) b - 7 - 8
= b-15
Answer:
12 cm
Step-by-step explanation:
First, we find the scale factor from cone S to cone T.
ratio of volumes = (vol of T)/(vol of S) = (6144 pi cm^3)/(768 pi cm^3) = 8
The ratio of the volumes is 8:1
The scale factor, which is the ratio of linear dimensions (height, radius, etc.), is the cubic root of the ratio of the volumes.
scale factor = cubic root of 8 = 2
The height of cube T is 24 cm, so the height of cube S is 24 cm/2 = 12 cm.
Mdkdgsmsmsgsbjslsgsvsvsvsjs