make their own food through photosynthesis
That the pupl is smaller than the nulian hope this helped
0.0179 ohms for copper.
0.0184 ohms for annealed copper
Ď = R (A/l) where
Ď = electrical resistivity
R = electrical resistance of a uniform specimen
A = cross sectional area
l = length
Solve for R by multiplying both sides by l/A
R = Ď(l/A)
The cross section of the wire is pi * 1^2 mm = 3.14159 square mm = 3.14159e-6 square meters.
The length is 3 meters. So l/A = 3/3.14159e-6 = 9.5493e5
Ď for copper is 1.68e-8 so 1.68e-8 * 9.5493e5 = 1.60e-2 ohms at 20 C
But copper has a temperature coefficient (α) of 0.00386 per degree C.
So the resistance value needs to be adjusted based upon how far from 20 C the temperature is.
50 - 20 = 30 C
So 0.00386 * 30 = 0.1158 meaning that the actual resistance at 50 C will be 11.58% higher.
So 1.1158 * 0.016 = 0.0179 ohms.
If you're using annealed copper, the values for Ď and the temperature coefficient change.
Ď = 1.72e-8
α = 0.00393
Doing the math, you get
1.72e-8 * 9.5493e5 * (1 + 30 * 0.00393) = 0.0184 ohms
Answer:
-26 m/s (backward)
Explanation:
We can solve this problem by using the law of conservation of momentum.
In fact, the total momentum momentum of the cannon + ball system must be conserved before and after the explosion.
Before the explosion, they are both at rest, so the total momentum is zero:
p = 0
After the explosion, the total momentum is:

where
M = 1.5 kg is the mass of the cannon
m = 0.52 kg is the mass of the ball
v = +75 m/s is the velocity of the ball
V is the velocity of the cannon
Since the momentum is conserved, we can equate the two expressions:

And solving, we find V:

where the negative sign means the direction is opposite to that of the ball.
Answer:

Explanation:
Average acceleration is found by dividing the change in acceleration by the time.

The shuttle bus has an acceleration of -2.4 meters per square second. It slows from 9.0 meters per second to rest, or 0 meters per second. Therefore:

Substitute the values into the formula.

Solve the numerator.

We want to solve for t, the time. We have to isolate the variable. Let's cross multiply.



t is being multiplied by -2.4. The inverse of multiplication is division, so divide both sides by -2.4



It takes <u>3.75 seconds.</u>