The percentage of young adults send between 128 and 158 text messages per day is; 34%
<h3>How to find the percentage from z-score?</h3>
The distribution is approximately Normal, with a mean of 128 messages and a standard deviation of 30 messages.
We are given;
Sample mean; x' = 158
Population mean; μ = 128
standard deviation; σ = 30
We want to find the area under the curve from x = 248 to x = 158.
where x is the number of text messages sent per day.
To find P(158 < x < 248), we will convert the score x = 158 to its corresponding z score as;
z = (x - μ)/σ
z = (158 - 128)/30
z = 30/30
z = 1
This tells us that the score x = 158 is exactly one standard deviation above the mean μ = 128.
From online p-value from z-score calculator, we have;
P-value = 0.34134 = 34%
Approximately 34% of the the population sends between 128 and 158 text messages per day.
Read more about p-value from z-score at; brainly.com/question/25638875
#SPJ1
Answer:
I don't know nothing bout this what grade
Answer:
x=2; y=1
Step-by-step explanation:
Since the triangle is equilateral, which means three sides have the same length.
So we have:4x-y=2x+3y=7

Since 2x+3y=7 and plug in x=2y
we have

and since y=1
x=2
You use the butterfly method:
360 24
___ ___
X 100
multiply 360 by 100 to get 36000
then divide by 24 to get 1500
Answer:
0.916
Step-by-step explanation:
Trust me thats all you gotta do.