Answer:
a)
X | 1 3 5 7
f(X) | 0.4 0.2 0.2 0.2
b) ![P(4](https://tex.z-dn.net/?f=%20P%284%20%3CX%20%5Cleq%207%29%3D%20P%28X%5Cleq%207%29%20-P%28X%3C4%29%20%3D%20P%28X%5Cleq%207%29%20-P%28X%20%5Cleq%203%29%20%3D%20%280.4%2B0.2%2B0.2%2B0.2%29%20-%280.4%2B0.2%29%3D%200.4%20)
Step-by-step explanation:
For this case we have defined the cumulative distribution function like this:
![F(X) = 0, x](https://tex.z-dn.net/?f=%20F%28X%29%20%3D%200%2C%20x%3C1)
![F(X) = 0.4, 1 \leq x](https://tex.z-dn.net/?f=%20F%28X%29%20%3D%200.4%2C%201%20%5Cleq%20x%20%3C3%20)
![F(X) = 0.6, 3 \leq x](https://tex.z-dn.net/?f=%20F%28X%29%20%3D%200.6%2C%203%20%5Cleq%20x%20%3C5%20)
![F(X) = 0.8, 5 \leq x](https://tex.z-dn.net/?f=%20F%28X%29%20%3D%200.8%2C%205%20%5Cleq%20x%20%3C7%20)
![F(X) = 1, x \geq 7](https://tex.z-dn.net/?f=%20F%28X%29%20%3D%201%2C%20x%20%5Cgeq%207%20)
And we know that the general definition for the distribution function is given by:
![F(x) = P(X \leq x) = \sum_{i\leq k} f(i)](https://tex.z-dn.net/?f=%20F%28x%29%20%3D%20P%28X%20%5Cleq%20x%29%20%3D%20%5Csum_%7Bi%5Cleq%20k%7D%20f%28i%29)
Where f represent the density function.
Part a
For this case we need to find the density function, so we can find the values for the density for each value of X = 1,2,3,4,5,6,7,... since X is a discrete random variable.
![f(1) = P(X=1) = P(X \leq 1) - P(X=0) = F(1) -F(0) = 0.4-0=0.4](https://tex.z-dn.net/?f=%20f%281%29%20%3D%20P%28X%3D1%29%20%3D%20P%28X%20%5Cleq%201%29%20-%20P%28X%3D0%29%20%3D%20F%281%29%20-F%280%29%20%3D%200.4-0%3D0.4)
![f(2) = P(X=2) = P(X \leq 2) - P(X=0)- P(X=1) = F(2) -F(1) = 0.4-0.4=0](https://tex.z-dn.net/?f=%20f%282%29%20%3D%20P%28X%3D2%29%20%3D%20P%28X%20%5Cleq%202%29%20-%20P%28X%3D0%29-%20P%28X%3D1%29%20%3D%20F%282%29%20-F%281%29%20%3D%200.4-0.4%3D0)
![f(3) = P(X=3) = P(X \leq 3) - P(X=0)- P(X=1) -P(X=2) = F(3) -F(2) = 0.6-0.4=0.2](https://tex.z-dn.net/?f=%20f%283%29%20%3D%20P%28X%3D3%29%20%3D%20P%28X%20%5Cleq%203%29%20-%20P%28X%3D0%29-%20P%28X%3D1%29%20-P%28X%3D2%29%20%3D%20F%283%29%20-F%282%29%20%3D%200.6-0.4%3D0.2)
![f(4) = P(X=4) = P(X \leq 4) - P(X=0)- P(X=1) -P(X=2)-P(X=3) = F(4) -F(3) = 0.6-0.6=0](https://tex.z-dn.net/?f=%20f%284%29%20%3D%20P%28X%3D4%29%20%3D%20P%28X%20%5Cleq%204%29%20-%20P%28X%3D0%29-%20P%28X%3D1%29%20-P%28X%3D2%29-P%28X%3D3%29%20%3D%20F%284%29%20-F%283%29%20%3D%200.6-0.6%3D0)
![f(5) = P(X=5) = P(X \leq 5) - P(X=0)- P(X=1) -P(X=2)-P(X=3)-P(X=4) = F(5) -F(4) = 0.8-0.6=0.2](https://tex.z-dn.net/?f=%20f%285%29%20%3D%20P%28X%3D5%29%20%3D%20P%28X%20%5Cleq%205%29%20-%20P%28X%3D0%29-%20P%28X%3D1%29%20-P%28X%3D2%29-P%28X%3D3%29-P%28X%3D4%29%20%3D%20F%285%29%20-F%284%29%20%3D%200.8-0.6%3D0.2)
![f(6) = P(X=6) = P(X \leq 6) - P(X=0)- P(X=1) -P(X=2)-P(X=3)-P(X=4)-P(X=5) = F(6) -F(5) = 0.8-0.8=0](https://tex.z-dn.net/?f=%20f%286%29%20%3D%20P%28X%3D6%29%20%3D%20P%28X%20%5Cleq%206%29%20-%20P%28X%3D0%29-%20P%28X%3D1%29%20-P%28X%3D2%29-P%28X%3D3%29-P%28X%3D4%29-P%28X%3D5%29%20%3D%20F%286%29%20-F%285%29%20%3D%200.8-0.8%3D0)
![f(7) = P(X=7) = P(X \leq 7) - P(X=0)- P(X=1) -P(X=2)-P(X=3)-P(X=4)-P(X=5)-P(X=6) = F(7) -F(6) = 1-0.8=0.2](https://tex.z-dn.net/?f=%20f%287%29%20%3D%20P%28X%3D7%29%20%3D%20P%28X%20%5Cleq%207%29%20-%20P%28X%3D0%29-%20P%28X%3D1%29%20-P%28X%3D2%29-P%28X%3D3%29-P%28X%3D4%29-P%28X%3D5%29-P%28X%3D6%29%20%3D%20F%287%29%20-F%286%29%20%3D%201-0.8%3D0.2)
And for any value higher than 7 we have that:
![x_i \in [8,9,10,...]](https://tex.z-dn.net/?f=%20x_i%20%5Cin%20%5B8%2C9%2C10%2C...%5D)
![f(x_i) = F(X_i) -F(X_i -1) = 1-1=0](https://tex.z-dn.net/?f=%20f%28x_i%29%20%3D%20F%28X_i%29%20-F%28X_i%20-1%29%20%3D%201-1%3D0)
So then we have our density function defined like this:
X | 1 3 5 7
f(X) | 0.4 0.2 0.2 0.2
Part b
For this case we want to find this probability ![P(4](https://tex.z-dn.net/?f=%20P%284%20%3CX%20%5Cleq%207%29%20)
And since the random variable is discrete we can write this like that:
![P(4](https://tex.z-dn.net/?f=%20P%284%20%3CX%20%5Cleq%207%29%3D%20P%28X%5Cleq%207%29%20-P%28X%3C4%29%20%3D%20P%28X%5Cleq%207%29%20-P%28X%20%5Cleq%203%29%20%3D%20%280.4%2B0.2%2B0.2%2B0.2%29%20-%280.4%2B0.2%29%3D%200.4%20)