Answer:
point and lines
Step-by-step explanation:
By algebra properties we find the following relationships between each pair of algebraic expressions:
- First equation: Case 4
- Second equation: Case 1
- Third equation: Case 2
- Fourth equation: Case 5
- Fifth equation: Case 3
<h3>How to determine pairs of equivalent equations</h3>
In this we must determine the equivalent algebraic expression related to given expressions, this can be done by applying algebra properties on equations from the second column until equivalent expression is found. Now we proceed to find for each case:
First equation
(7 - 2 · x) + (3 · x - 11)
(7 - 11) + (- 2 · x + 3 · x)
- 4 + (- 2 + 3) · x
- 4 + (1) · x
- 4 + (5 - 4) · x
- 4 - 4 · x + 5 · x
- 4 · (x + 1) + 5 · x → Case 4
Second equation
- 7 + 6 · x - 4 · x + 3
(6 · x - 4 · x) + (- 7 + 3)
(6 - 4) · x - 4
2 · x - 4
2 · (x - 2) → Case 1
Third equation
9 · x - 2 · (3 · x - 3)
9 · x - 6 · x + 6
3 · x + 6
(2 + 1) · x + (14 - 8)
[1 - (- 2)] · x + (14 - 8)
(x + 14) - (8 - 2 · x) → Case 2
Fourth equation
- 3 · x + 6 + 4 · x
x + 6
(5 - 4) · x + (7 - 1)
(7 + 5 · x) + (- 4 · x - 1) → Case 5
Fifth equation
- 2 · x + 9 + 5 · x + 6
3 · x + 15
3 · (x + 5) → Case 3
To learn more on algebraic equations: brainly.com/question/24875240
#SPJ1
Answer:1100
Explanation:89% of 10,000 is 8900 subtract 8900 from 10,000 bam you got 1100
your welcome
Answer:
Step-by-step explanation:
Vertex A of the triangle ABC when rotated by 90° counterclockwise about the origin,
Rule to be followed,
A(x, y) → P(-y, x)
Therefore, A(1, 1) → P(-1, 1)
Similarly, B(3, 2) → Q(-2, 3)
C(2, 5) → R(-5, 2)
Triangle given in second quadrant will be the triangle PQR.
If the point P of triangle PQR is reflected across a line y = x,
Rule to be followed,
P(x, y) → X(y, x)
P(-1, 1) → X(1, -1)
Similarly, Q(-2, 3) → Y(3, -2)
R(-5, 2) → Z(2, -5)
Therefore, triangle given in fourth quadrant is triangle XYZ.