Answer:
9,2 feet
Step-by-step explanation:
Use the Pythagorean theorem: height= sqrt(10^2-4^2)= sqrt(84) =9,2 ~
sqrt Is Square root btw
Answer:
A, B, C, D
Step-by-step explanation:
(A) Checking the Equal Variance Assumption, the appropriate technique to use is:
- The ANOVA (Analysis of Variance) F test
- Plot residuals against fitted values
(B) Checking the Normal Assumption, the appropriate techniques to use are:
- Test for Kurtosis & Skewness
- Kolmogorov-Smirnov Test
- Q-Q Plots (the graphical method) also known as Quantile Plot
- Do not use a histogram; it is not advisable
(C) Checking for Model Misspecification, the appropriate techniques to use are:
- The Ramsey Regression Specification Error Test; also called RESET
- The Davidson & MacKinnon J. Test
(D) Checking for dependent errors, the appropriate technique to use is:
- Plot residuals against time variables
Answer:
6 cm by 6 cm
Step-by-step explanation:
We know that the formula for area of a square is A = s² where A = area and s is the length of one side. We know that A = 36 so:
36 = s²
√36 = s
s = ±6
Note that s = -6 is an extraneous solution because you can't have a side length of -6, therefore the answer is s = 6 so the dimensions of the square are 6 cm by 6 cm.
It should be the first answer choice between those two
The correct option is (B) yes because all the elements of set R are in set A.
<h3>
What is an element?</h3>
- In mathematics, an element (or member) of a set is any of the distinct things that belong to that set.
Given sets:
- U = {x | x is a real number}
- A = {x | x is an odd integer}
- R = {x | x = 3, 7, 11, 27}
So,
- A = 1, 3, 5, 7, 9, 11... are the elements of set A.
- R ⊂ A can be understood as R being a subset of A, i.e. all of R's elements can be found in A.
- Because all of the elements of R are odd integers and can be found in A, R ⊂ A is TRUE.
Therefore, the correct option is (B) yes because all the elements of set R are in set A.
Know more about sets here:
brainly.com/question/2166579
#SPJ4
The complete question is given below:
Consider the sets below. U = {x | x is a real number} A = {x | x is an odd integer} R = {x | x = 3, 7, 11, 27} Is R ⊂ A?
(A) yes, because all the elements of set A are in set R
(B) yes, because all the elements of set R are in set A
(C) no because each element in set A is not represented in set R
(D) no, because each element in set R is not represented in set A