Answer:
The cost per ticket is<u> constant</u>.
Step-by-step explanation:
Given:
It costs $20 for 4 play tickets and $35 for 7 play tickets.
Now, to get whether cost per ticket is constant or not.
So, if the cost per ticket is constant that means the cost of ticket for a play or more is fixed, non-varying and it does not change.
Now, we check it:
4 play tickets costs = $20.
1 play tickets costs = $20 ÷ 4 = $5.
So, 7 play tickets costs = $5 × 7 = $35.
Thus, the cost of ticket for play is not changing and it is constant.
So the cost per ticket is constant.
Therefore, the cost per ticket is constant.
The exponential function shown in the graph is 3^x, so (1/2)3^x is a shrink of it.
Selection B is appropriate.
Answer:
x = 4.4
Step-by-step explanation:
I'm going to assume you want to solve for x so here we go.
You need to work backwards for this equation, and whatever you do to the LHS, you do to the RHS.
First, you need to remove the minus 3, which means that on both sides, you add 3. Adding three on the LHS makes the -3 disappear, and adding 3 on the RHS makes the 19 go to a 22.
Your equation is now 5x=22.
Since 5x means 5 × x, to get rid of it, you need to divide 5x by 5. Doing it to the LHS will make the five disappear, and doing it to the RHS will make it go to 22 ÷ 5 which equals 4.4
Therefore, x = 4.4
Answer:
just do 58,125 divided by 6
Step-by-step explanation:
Answer:
x-y=4
and
x+y=32 is <u>your</u><u> </u><u>equation</u>
<u>d</u><u>i</u><u>f</u><u>f</u><u>e</u><u>r</u><u>e</u><u>n</u><u>c</u><u>e</u><u> </u><u>o</u><u>f</u><u> </u><u>t</u><u>w</u><u>o</u><u> </u><u>n</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u> </u><u>=</u><u>x-y</u><u> </u><u>is</u><u> </u><u>equal</u><u> </u><u>to</u><u> </u><u>4</u>
<u>s</u><u>u</u><u>m</u><u> </u><u>o</u><u>f</u><u> </u><u>t</u><u>w</u><u>o</u><u> </u><u>n</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u>=</u><u>x</u><u>+</u><u>y</u><u> </u><u>i</u><u>s</u><u> </u><u>e</u><u>q</u><u>u</u><u>a</u><u>l</u><u> </u><u>t</u><u>o</u><u> </u><u>3</u><u>2</u>
<u>x</u><u>-</u><u>y</u><u>=</u><u>4</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>(</u><u>1</u><u>)</u>
<u>x</u><u>+</u><u>y</u><u>=</u><u>3</u><u>2</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>(</u><u>2</u><u>)</u>
<u>a</u><u>d</u><u>d</u><u>i</u><u>n</u><u>g</u><u> </u><u>equation</u><u> </u><u>1</u><u> </u><u>a</u><u>n</u><u>d</u><u> </u><u>2</u>
<u>x</u><u>-</u><u>y</u><u> </u><u>+</u><u>x</u><u>+</u><u>y</u><u>=</u><u>4</u><u>+</u><u>3</u><u>2</u>
<u>2</u><u>x</u><u>=</u><u>3</u><u>6</u>
<u>x</u><u>=</u><u>3</u><u>6</u><u>/</u><u>2</u><u>=</u><u>1</u><u>6</u><u>a</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u>
<u>s</u><u>u</u><u>b</u><u>s</u><u>t</u><u>i</u><u>t</u><u>u</u><u>t</u><u>i</u><u>n</u><u>g</u><u> </u><u>value</u><u> </u><u>of</u><u> </u><u>y</u><u> </u><u>in</u><u> </u><u>equation</u><u> </u><u>1</u>
<u>1</u><u>6</u><u>-</u><u>y</u><u>=</u><u>4</u>
<u>1</u><u>6</u><u>-</u><u>4</u><u>=</u><u>y</u>
<u>y</u><u>=</u><u>1</u><u>2</u><u> </u><u>a</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u>