Answer:
No extraneous solution
Step-by-step explanation:
We have the logarithmic equation given by,
![\log_{2}[\log_{2}(\sqrt{4x})]=1](https://tex.z-dn.net/?f=%5Clog_%7B2%7D%5B%5Clog_%7B2%7D%28%5Csqrt%7B4x%7D%29%5D%3D1)
i.e. 
i.e. 
i.e. 
i.e. 
i.e. 
i.e. 
So, the solution of the given equation is x=4.
Now, as we domain of square root function is x > 0 and also, the domain of logarithmic function is
.
Therefore, the domain of the given function is x > 0.
We know that the extraneous solution is the solution which does not belong to the domain.
But as x=4 belongs to the domain x > 0.
Thus, x = 4 is not an extraneous solution.
Hence, this equation does not have any extraneous solution.
Answer:
No, because the ratios of the sides that form the vertex angles are the same, but the vertex angles may not be congruent.
Step-by-step explanation:
I just took the quick check
<span>A.Two acute angles and two obtuse angles
Hope this helps!
</span>
Answer:
2:25pm
Step-by-step explanation:
The time given is 5pm to catch the train back to school;
Amount of time for the tour = 1hr 45min
= 105min
Amount of time at gift shop = 30min
Amount of time to save = 20min
Total time = 105min + 30min + 20min = 155min
So;
Total time = 2hr 35min
So;
5pm - 2hr 35min = 2:25pm