Answer:
Therefore, equation of the line that passes through (16,-7) and is perpendicular to the line
is
Step-by-step explanation:
Given:
To Find:
Equation of line passing through ( 16, -7) and is perpendicular to the line
Solution:
...........Given

Comparing with,
Where m =slope
We get
We know that for Perpendicular lines have product slopes = -1.

Substituting m1 we get m2 as

Therefore the slope of the required line passing through (16 , -7) will have the slope,
Now the equation of line in slope point form given by
Substituting the point (16 , -7) and slope m2 we will get the required equation of the line,
Therefore, equation of the line that passes through (16,-7) and is perpendicular to the line
is
Answer:The value of the bulldozer after 3 years is $121950
Step-by-step explanation:
We would apply the straight line depreciation method. In this method, the value of the asset(bulldozer) is reduced linearly over its useful life until it reaches its salvage value. The formula is expressed as
Annual depreciation expense =
(Cost of the asset - salvage value)/useful life of the asset.
From the given information,
Useful life = 23 years
Salvage value of the bulldozer = $14950
Cost of the new bulldozer is $138000
Therefore
Annual depreciation = (138000 - 14950)/ 23 = $5350
The value of the bulldozer at any point would be V. Therefore
5350 = (138000 - V)/ t
5350t = 138000 - V
V = 138000 - 5350t
The value of the bulldozer after 3 years would be
V = 138000 - 5350×3 = $121950
(1) it can be both exterior of vertex or base. 180-130=50°
vertex is 50°: base=(180-50)/2=65°
base is 50°: vertex= 180-2*50=80°
vertex 50 base 65; vertex 80, base 50
(2)base=180-130=50°
vertex=180-2*50=80°
base 50 vertex 80
X+5
Y-7
Fractions can someone help me pls
I don’t know what the options are but I think it is 95 because 120-25 = 95