Answer:
x = 1/2m
Step-by-step explanation:
I suspect 4/2 should actually be 4/3, since 4/2 = 2, while 4/3 would make V the volume of a sphere with radius r. But I'll stick with what's given:





In Mathematica, you can check this result via
D[4/2*Pi*r^3, r]
T⁻¹ is the inverse function of T.
To get the inverse function, replace x with y and y with x.
So T<span>⁻¹(x, y): (x + 2, y - 7)</span>
Answer:
The general equation following the pattern becomes is 7 + (n - 1)×2
Where, n = The figure number - 1
Step-by-step explanation:
The pattern in the question can be described as follows;
Figure 2 = (5 + 2) squares boxes = 7 squares boxes
Figure 3 = (5 + 2 + 2) squares boxes
Figure 4 = (5 + 2 + 2 + 2) squares boxes
Therefore, the number of squares boxes per figure, form an arithmetic progression (a + (n - 1)d) with the first term a = 7, the common difference d = 2, and the n = the nth term of the series, such that the general equation following the pattern becomes;
7 + (n - 1)×2.