Given:
4log1/2^w (2log1/2^u-3log1/2^v)
Req'd:
Single logarithm = ?
Sol'n:
First remove the parenthesis,
4 log 1/2 (w) + 2 log 1/2 (u) - 3 log 1/2 (v)
Simplify each term,
Simplify the 4 log 1/2 (w) by moving the constant 4 inside the logarithm;
Simplify the 2 log 1/2 (u) by moving the constant 2 inside the logarithm;
Simplify the -3 log 1/2 (v) by moving the constant -3 inside the logarithm:
log 1/2 (w^4) + 2 log 1/2 (u) - 3 log 1/2 (v)
log 1/2 (w^4) + log 1/2 (u^2) - log 1/2 (v^3)
We have to use the product property of logarithms which is log of b (x) + log of b (y) = log of b (xy):
Thus,
Log of 1/2 (w^4 u^2) - log of 1/2 (v^3)
then use the quotient property of logarithms which is log of b (x) - log of b (y) = log of b (x/y)
Therefore,
log of 1/2 (w^4 u^2 / v^3)
and for the final step and answer, reorder or rearrange w^4 and u^2:
log of 1/2 (u^2 w^4 / v^3)
Answer:
Step-by-step explanation:
<u>Given</u>
<u>Composite function</u>
<u>The denominator can't be zero</u>
Answer:
- 9
Step-by-step explanation:

Answer:
Step-by-step explanation:
A
Answer:
y = 2x - 3
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
y = -
x - 4 ← is in slope- intercept form
with slope m = - 
Given a line with slope m then the slope of a line perpendicular to it is
= -
= -
= 2, thus
y = 2x + c ← is the partial equation
To find c substitute (3, 3) into the partial equation
3 = 6 + c ⇒ c = 3 - 6 = - 3
y = 2x - 3 ← equation of perpendicular line