Write 35/22 as a decimal How to convert the fraction 35/22 to a decimal value. Please, input values in this format: a b/c or b/c.
<span>
Examples: Four tenths should be typed as 4/10. One and three-half should be typed as 1 3/2. For mixed numbers, please leave a space between the the integer and the fraction.
</span><span>Enter a fraction value:
</span>35/22/ Ex.: 1/2, 2 1/2, 5/3, etc. Note that 2 1/2 means two and half = 2 + 1/2 = 2.5/ Your answer 1.5909090909090908
Answer:
The answer to your question is y = -11/2x - 19
Step-by-step explanation:
Data
Point (-4, 3)
⊥ to the line x- intercept of 22 and y-intercept of -4.
Process
1.- Find the equation of the perpendicular line
This line has passes through the points (22, 0) and (0, -4)
Slope = 
2.- Find the slope of the new equation
Slope =
because the lines are perpendicular
3.- Find the equation of the new line
y - 3 = -11/2 (x + 4)
y - 3 = -11/2x - 44/2
y - 3 = -11/2 x - 22
y = -11/2 x - 22 + 3
y = -11/2x - 19
See the graph below
Answer:
E
Step-by-step explanation:
because it makes sense
Answer:
a) ![\cos(\theta) = \frac{\sqrt[]{33}}{7}](https://tex.z-dn.net/?f=%5Ccos%28%5Ctheta%29%20%3D%20%5Cfrac%7B%5Csqrt%5B%5D%7B33%7D%7D%7B7%7D)
b) ![\sin(\theta + \frac{\pi}{6})\frac{-3\sqrt[]{11}+4}{14}](https://tex.z-dn.net/?f=%5Csin%28%5Ctheta%20%2B%20%5Cfrac%7B%5Cpi%7D%7B6%7D%29%5Cfrac%7B-3%5Csqrt%5B%5D%7B11%7D%2B4%7D%7B14%7D)
c) ![\cos(\theta-\pi)=\frac{\sqrt[]{33}}{7}](https://tex.z-dn.net/?f=%5Ccos%28%5Ctheta-%5Cpi%29%3D%5Cfrac%7B%5Csqrt%5B%5D%7B33%7D%7D%7B7%7D)
d)![\tan(\theta + \frac{\pi}{4}) = \frac{\frac{-4}{\sqrt[]{33}}+1}{1+\frac{4}{\sqrt[]{33}}}](https://tex.z-dn.net/?f=%5Ctan%28%5Ctheta%20%2B%20%5Cfrac%7B%5Cpi%7D%7B4%7D%29%20%3D%20%5Cfrac%7B%5Cfrac%7B-4%7D%7B%5Csqrt%5B%5D%7B33%7D%7D%2B1%7D%7B1%2B%5Cfrac%7B4%7D%7B%5Csqrt%5B%5D%7B33%7D%7D%7D)
Step-by-step explanation:
We will use the following trigonometric identities


.
Recall that given a right triangle, the sin(theta) is defined by opposite side/hypotenuse. Since we know that the angle is in quadrant 2, we know that x should be a negative number. We will use pythagoras theorem to find out the value of x. We have that

which implies that
. Recall that cos(theta) is defined by adjacent side/hypotenuse. So, we know that the hypotenuse is 7, then
![\cos(\theta) = \frac{-\sqrt[]{33}}{7}](https://tex.z-dn.net/?f=%5Ccos%28%5Ctheta%29%20%3D%20%5Cfrac%7B-%5Csqrt%5B%5D%7B33%7D%7D%7B7%7D)
b)Recall that
, then using the identity from above, we have that
![\sin(\theta + \frac{\pi}{6}) = \sin(\theta)\cos(\frac{\pi}{6})+\cos(\alpha)\sin(\frac{\pi}{6}) = \frac{4}{7}\frac{1}{2}-\frac{\sqrt[]{33}}{7}\frac{\sqrt[]{3}}{2} = \frac{-3\sqrt[]{11}+4}{14}](https://tex.z-dn.net/?f=%5Csin%28%5Ctheta%20%2B%20%5Cfrac%7B%5Cpi%7D%7B6%7D%29%20%3D%20%5Csin%28%5Ctheta%29%5Ccos%28%5Cfrac%7B%5Cpi%7D%7B6%7D%29%2B%5Ccos%28%5Calpha%29%5Csin%28%5Cfrac%7B%5Cpi%7D%7B6%7D%29%20%3D%20%5Cfrac%7B4%7D%7B7%7D%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B%5Csqrt%5B%5D%7B33%7D%7D%7B7%7D%5Cfrac%7B%5Csqrt%5B%5D%7B3%7D%7D%7B2%7D%20%3D%20%5Cfrac%7B-3%5Csqrt%5B%5D%7B11%7D%2B4%7D%7B14%7D)
c) Recall that
. Then,
![\cos(\theta-\pi)=\cos(\theta)\cos(\pi)+\sin(\theta)\sin(\pi) = \frac{-\sqrt[]{33}}{7}\cdot(-1) + 0 = \frac{\sqrt[]{33}}{7}](https://tex.z-dn.net/?f=%5Ccos%28%5Ctheta-%5Cpi%29%3D%5Ccos%28%5Ctheta%29%5Ccos%28%5Cpi%29%2B%5Csin%28%5Ctheta%29%5Csin%28%5Cpi%29%20%3D%20%5Cfrac%7B-%5Csqrt%5B%5D%7B33%7D%7D%7B7%7D%5Ccdot%28-1%29%20%2B%200%20%3D%20%5Cfrac%7B%5Csqrt%5B%5D%7B33%7D%7D%7B7%7D)
d) Recall that
and
. Then
![\tan(\theta+\frac{\pi}{4}) = \frac{\tan(\theta)+\tan(\frac{\pi}{4})}{1-\tan(\theta)\tan(\frac{\pi}{4})} = \frac{\frac{-4}{\sqrt[]{33}}+1}{1+\frac{4}{\sqrt[]{33}}}](https://tex.z-dn.net/?f=%5Ctan%28%5Ctheta%2B%5Cfrac%7B%5Cpi%7D%7B4%7D%29%20%3D%20%5Cfrac%7B%5Ctan%28%5Ctheta%29%2B%5Ctan%28%5Cfrac%7B%5Cpi%7D%7B4%7D%29%7D%7B1-%5Ctan%28%5Ctheta%29%5Ctan%28%5Cfrac%7B%5Cpi%7D%7B4%7D%29%7D%20%3D%20%5Cfrac%7B%5Cfrac%7B-4%7D%7B%5Csqrt%5B%5D%7B33%7D%7D%2B1%7D%7B1%2B%5Cfrac%7B4%7D%7B%5Csqrt%5B%5D%7B33%7D%7D%7D)
Answer:
10.33
Step-by-step explanation:
is equal to 31 divided by 3, which is 10.33333333333333333...
Rounded to the nearest hundredth we get 10.33.
Hope this helps!