<em>So</em><em>,</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>of</em><em> </em><em>option</em><em> </em><em>A</em><em>.</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em>⤴</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em>
Answer:
Step-by-step explanation:
g(t)=t^2 - t
f(x) = (1 + x)
g(f(x)) = f(x)^2 - f(x)
g(f(x)) = (x + 1)^2 - x - 1
g(f(0)) = (0 +1)^2 - x - 1
g(f(0)) = 1 - 1 - 1 = -1
================================
f(x) = 1 + x
f(g(t)) = 1 + g(t)
f(g(t)) = 1 + t^2 - t
f(g(0)) = 1 + 0 - 0
f(g(0)) = 1
The answer I'm getting is 0.
Answer:
i think its C but not sure
Step-by-step explanation:
The second one is the only positive besides 4th but the second and first are the only 1861 so ide have to say the second one
Answer:
9·x² - 36·x = 4·y² + 24·y + 36 in standard form is;
(x - 2)²/2² - (y + 3)²/3² = 1
Step-by-step explanation:
The standard form of a hyperbola is given as follows;
(x - h)²/a² - (y - k)²/b² = 1 or (y - k)²/b² - (x - h)²/a² = 1
The given equation is presented as follows;
9·x² - 36·x = 4·y² + 24·y + 36
By completing the square, we get;
(3·x - 6)·(3·x - 6) - 36 = (2·y + 6)·(2·y + 6)
(3·x - 6)² - 36 = (2·y + 6)²
(3·x - 6)² - (2·y + 6)² = 36
(3·x - 6)²/36 - (2·y + 6)²/36 = 36/36 = 1
(3·x - 6)²/6² - (2·y + 6)²/6² = 1
3²·(x - 2)²/6² - 2²·(y + 3)²/6² = 1
(x - 2)²/2² - (y + 3)²/3² = 1
The equation of the hyperbola is (x - 2)²/2² - (y + 3)²/3² = 1.