We can first turn the text into a proper formula:
x plus 10 plus 6 x plus 2 x
x+10+6x+2x
The like terms are the numbers with
We can then put the like terms together to continue the calculation:
x+6x+2x+10
=9x + 10
Therefore, the answer is 9x + 10.
Hope it helps!
A
the word 'of' means to multiply
0.45 × 80 = 36
^ means to the power of or exponent
logb(x) = y is b^y = x
Note the hundredth place value (underlined and bolded):
9.3<u>7</u>5
Look at the number to the right of the hundredth place value. It is a 5. Because you round up if the number is 5 or greater, you round up in this case (you round down if it is 4 or less).
9.375 rounded to the nearest hundredth is 9.38
~
Answer:
The set of solutions is ![\{\left[\begin{array}{c}x\\y\\z\end{array}\right]=\left[\begin{array}{c}12\\-7-r\\r\end{array}\right]: \text{r is a real number} \}](https://tex.z-dn.net/?f=%5C%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D12%5C%5C-7-r%5C%5Cr%5Cend%7Barray%7D%5Cright%5D%3A%20%5Ctext%7Br%20is%20a%20real%20number%7D%20%20%5C%7D)
Step-by-step explanation:
The augmented matrix of the system is
.
We will use rows operations for find the echelon form of the matrix.
- In row 2 we subtract
from row 1. (R2- 2/3R1) and we obtain the matrix ![\left[\begin{array}{cccc}3&6&6&-9\\0&1&1&-7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D3%266%266%26-9%5C%5C0%261%261%26-7%5Cend%7Barray%7D%5Cright%5D)
- We multiply the row 1 by
.
Now we solve for the unknown variables:
The system has a free variable, the the system has infinite solutions and the set of solutions is ![\{\left[\begin{array}{c}x\\y\\z\end{array}\right]=\left[\begin{array}{c}12\\-7-r\\r\end{array}\right]: \text{r is a real number} \}](https://tex.z-dn.net/?f=%5C%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D12%5C%5C-7-r%5C%5Cr%5Cend%7Barray%7D%5Cright%5D%3A%20%5Ctext%7Br%20is%20a%20real%20number%7D%20%20%5C%7D)