1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sveta_85 [38]
3 years ago
10

Express as a fraction 2 3/7 pounds to 2 6/7 pounds

Mathematics
1 answer:
dmitriy555 [2]3 years ago
3 0
\bf \begin{cases}
2\frac{3}{7}\implies \cfrac{2\cdot 7+3}{7}\implies &\cfrac{17}{7}\\
2\frac{6}{7}\implies \cfrac{2\cdot 7+6}{7}\implies &\cfrac{20}{7}
\end{cases}
\\ \quad \\
\textit{a   to   b}\implies a:b\implies \frac{a}{b}\qquad thus
\\ \quad \\
2\frac{3}{7}\ to\ 2\frac{6}{7}\implies 2\frac{3}{7}:2\frac{6}{7}\implies 
\cfrac{2\frac{3}{7}}{2\frac{6}{7}}
\implies 
\cfrac{\frac{17}{7}}{\frac{20}{7}}

\bf recall\implies \cfrac{\frac{a}{b}}{\frac{c}{{{ d}}}}\implies \cfrac{a}{b}\cdot \cfrac{{{ d}}}{c}\qquad thus
\\ \quad \\\\ \quad \\
\cfrac{17}{7}\cdot \cfrac{7}{20}\implies \cfrac{17\cdot 7}{7\cdot 20}\implies \cfrac{\boxed{?}}{\boxed{?}}
You might be interested in
Add the following using the common denominator method. Show all of your work. <br><br> 2/3 + 2/9
Alekssandra [29.7K]

Answer:

8/9

Step-by-step explanation:

First we need to get both of the fractions to the same denominator.

1. 2/3 + 2/9 = 6/9 + 2/9

Next, we simply just add the fractions.

2. 6/9 + 2/9 = 8/9

8 0
3 years ago
1!+2(2!)+3(3!)+...+n(n!)=(n+1)!-1<br><br><br><br><br>​
anyanavicka [17]

Step-by-step explanation:

OK, let's assume it this way:

<em>Sn=1.1!+2.2!+3.3!+...+n.n!</em><em>=</em><em>(</em><em>2</em><em>‐</em><em>1</em><em>)</em><em>.</em><em>1</em><em>!</em><em>+</em><em>(</em><em>3</em><em>-</em><em>1</em><em>)</em><em>.</em><em>2</em><em>!</em><em>+</em><em>(</em><em>4</em><em>-</em><em>1</em><em>)</em><em>3</em><em>!</em><em>+</em><em>.</em><em>.</em><em>.</em><em>+</em><em>(</em><em>(</em><em>n</em><em>+</em><em>1</em><em>)</em><em>-</em><em>1</em><em>)</em><em>.</em><em>n</em><em>!</em>

Sn=1.1!+2.2!+3.3!+...+n.n!=(2‐1).1!+(3-1).2!+(4-1)3!+...+((n+1)-1).n!<em>=</em><em>(</em><em>2</em><em>.</em><em>1</em><em>!</em><em>-</em><em>1</em><em>!</em><em>)</em><em>+</em><em>(</em><em>3</em><em>.</em><em>2</em><em>!</em><em>-</em><em>2</em><em>!</em><em>)</em><em>+</em><em>(</em><em>4</em><em>.</em><em>3</em><em>!</em><em>-</em><em>3</em><em>!</em><em>)</em><em>+</em><em>.</em><em>.</em><em>.</em><em>+</em><em>(</em><em>(</em><em>n-1</em><em>)</em><em>n</em><em>!</em><em>-</em><em>n</em><em>!</em><em>)</em><em>=</em><em>(</em><em>2</em><em>!</em><em>-</em><em>1</em><em>!</em><em>)</em><em>+</em><em>(</em><em>3</em><em>!</em><em>-</em><em>2</em><em>!</em><em>)</em><em>+</em><em>(</em><em>4</em><em>!</em><em>-</em><em>3</em><em>!</em><em>)</em><em>+</em>

Sn=1.1!+2.2!+3.3!+...+n.n!=(2‐1).1!+(3-1).2!+(4-1)3!+...+((n+1)-1).n!=(2.1!-1!)+(3.2!-2!)+(4.3!-3!)+...+((n-1)n!-n!)=(2!-1!)+(3!-2!)+(4!-3!)+<em>.</em><em>.</em><em>.</em><em>+</em><em>(</em><em>n</em><em>+</em><em>1</em><em>)</em><em>!</em><em>-</em><em>n</em><em>!</em><em>=</em><em>(</em><em>n</em><em>+</em><em>1</em><em>)</em><em>!</em><em>-</em><em>1</em><em>!</em><em>=</em><em>(</em><em>n</em><em>+</em><em>1</em><em>)</em><em>!</em><em>-</em><em>1</em>

and boom problem solved

7 0
2 years ago
HELP ASAP!!!
Umnica [9.8K]
Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

           (a)/(a^2-16)+(2/(a-4))-(2/(a+4))=0 

Simplify ————— a + 4 <span>Equation at the end of step  1  :</span><span> a 2 2 (—————————+—————)-——— = 0 ((a2)-16) (a-4) a+4 </span><span>Step  2  :</span> 2 Simplify ————— a - 4 <span>Equation at the end of step  2  :</span><span> a 2 2 (—————————+———)-——— = 0 ((a2)-16) a-4 a+4 </span><span>Step  3  :</span><span> a Simplify ——————— a2 - 16 </span>Trying to factor as a Difference of Squares :

<span> 3.1 </span>     Factoring: <span> a2 - 16</span> 

Theory : A difference of two perfect squares, <span> A2 - B2  </span>can be factored into <span> (A+B) • (A-B)

</span>Proof :<span>  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 <span>- AB + AB </span>- B2 = 
        <span> A2 - B2</span>

</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication. 

Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.

Check : 16 is the square of 4
Check : <span> a2  </span>is the square of <span> a1 </span>

Factorization is :       (a + 4)  •  (a - 4) 

<span>Equation at the end of step  3  :</span> a 2 2 (————————————————— + —————) - ————— = 0 (a + 4) • (a - 4) a - 4 a + 4 <span>Step  4  :</span>Calculating the Least Common Multiple :

<span> 4.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a-4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>101</span><span><span> a-4 </span>111</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 4.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a+4

Making Equivalent Fractions :

<span> 4.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

Two fractions are called <span>equivalent </span>if they have the<span> same numeric value.</span>

For example :  1/2   and  2/4  are equivalent, <span> y/(y+1)2  </span> and <span> (y2+y)/(y+1)3  </span>are equivalent as well. 

To calculate equivalent fraction , multiply the <span>Numerator </span>of each fraction, by its respective Multiplier.

<span> L. Mult. • L. Num. a —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a+4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 4.4 </span>      Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

a + 2 • (a+4) 3a + 8 ————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  4  :</span> (3a + 8) 2 ————————————————— - ————— = 0 (a + 4) • (a - 4) a + 4 <span>Step  5  :</span>Calculating the Least Common Multiple :

<span> 5.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a+4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>111</span><span><span> a-4 </span>101</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 5.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a-4

Making Equivalent Fractions :

<span> 5.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

<span> L. Mult. • L. Num. (3a+8) —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a-4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 5.4 </span>      Adding up the two equivalent fractions 

(3a+8) - (2 • (a-4)) a + 16 ———————————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  5  :</span> a + 16 ————————————————— = 0 (a + 4) • (a - 4) <span>Step  6  :</span>When a fraction equals zero :<span><span> 6.1 </span>   When a fraction equals zero ...</span>

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the <span>denominator, </span>Tiger multiplys both sides of the equation by the denominator.

Here's how:

a+16 ——————————— • (a+4)•(a-4) = 0 • (a+4)•(a-4) (a+4)•(a-4)

Now, on the left hand side, the <span> (a+4) •</span> (a-4)  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   a+16  = 0

Solving a Single Variable Equation :

<span> 6.2 </span>     Solve  :    a+16 = 0<span> 

 </span>Subtract  16  from both sides of the equation :<span> 
 </span>                     a = -16 

One solution was found :

                  <span> a = -16</span>

4 0
3 years ago
Hey factory can produce fifth refrigerators in eight hours how many hours would it take to produce 1250 refrigerators
jarptica [38.1K]

Hey, I'm assuming you mean five refrigerators every eight hours. So . . .

1250 divide by 5. Which gives you 250.

Then take that 250 and multiply it by 8, and you have 2000.

So it would take 2000 hrs for a factory, that can produce 5 refrigerators every eight hours to, produce 1250 refrigerators.

6 0
3 years ago
Read 2 more answers
Hank has an old oil barrel he will use for a garbage can. The oil barrel is 84 centimeters in diameter and 150 centimeters in he
GREYUIT [131]
The answer to this question is going to be letter B
3 0
3 years ago
Other questions:
  • Find the sum to the equation of:
    11·1 answer
  • Which number produces an irrational number when multiplied by 0.4
    8·2 answers
  • Using snythetic divison (2x4 + 4x3 + 2x2 + 8x + 8) ÷ (x + 2).
    14·2 answers
  • If y varies directly as x and y=12 when x=c what is y in terms of c when x=8
    8·1 answer
  • The length of a park is 2/5 miles and the area is 9/10 square miles. What is the width of the park?
    7·1 answer
  • If your car gets 34 miles per gallon of gas and you have traveled 153 miles, how many gallons of gas have you used?
    13·1 answer
  • Samuel needs $29 to download some songs and movies on his MP3 player. His mother agrees to pay him $6 an hour for raking leaves
    5·2 answers
  • Not? Is t(n)=2⋅3n
    9·1 answer
  • How do I set the proportions up
    12·1 answer
  • What is the answer plz plz help me
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!