<span>Lets find the volume of a cylinder with a diameter D=10 inches and lenght L= 20 inches. First we need to notice that the diameter is twice the size of the radius: D=2r. Then we write the equation for the volume of the cylinder. it is the base times the height: V=pi*r^2 * L. Now we input the nubmers in the equation: V=3.14*(D/2)^2 * L where r=D/2=5 inches and after calculating we get: V=1570 inches^3</span>
The midpoint of 85 and 90 is 87
Answer: 1 over 2 (1/2)
Simplify 2 over 8 to get 1 over 4. Now you have 1 over 4 divided by 1 over 2. Whenever you divide with fractions you flip the fraction and multiply . So it becomes 1 over 4 multiplied by 2 over 1.
2/8 (divided by) 1/2
1/4 (divided by) 1/2
1/4 x 2/1
= 1/2
a. 3^4 which is equal to (3^-3)(3^7)
<span>3.19459 seconds
Since we've been given the equation for how high the ball is at t seconds, all we need to do is solve for a height of 0. So
h = 67 - 5t - 5t^2
0 = 67 - 5t - 5t^2
And you should immediately notice that we have a quadratic equation with A = -5, B = -5, and C=67. Use the quadratic formula to determine the roots of -4.19459 and 3.19459. Since we can't have negative seconds, that means that the ball will hit the ground 3.19459 seconds after it was thrown.</span>