I assume #3 is 19 because the slope of the line is still the same.
Hope this is right and it helps! I'm not very sure though.
The first derivative of the function f(x) = x² - 5 is equal to f'(x) = 2 · x.
<h3>How to find the derivative of a quadratic equation by definition of derivative</h3>
In this question we have a quadratic function, in which we must make use of the definition of derivative to find the expression of its first derivative. Then, the procedure is shown below:
f(x) = x² - 5 Given
f' = [(x + h)² - 5 - x² + 5] / h Definition of derivative
(x² + 2 · x · h + h² - 5 - x² + 5) / h Perfect square trinomial
(2 · x · h + h²) / h Associative, commutative and modulative properties / Existence of additive inverse
2 · x + h Distributive, commutative and associative properties / Definition of division / Existence of multiplicative inverse
2 · x h = 0 / Result
The first derivative of the function f(x) = x² - 5 is equal to f'(x) = 2 · x.
To learn more on derivatives: brainly.com/question/25324584
#SPJ1
I believe it's 5,6
Hope this helped!
To determine the excess amount, subtract 32 from 85.33 which has a numerical value of 53.33 grams.
Answer:

Step-by-step explanation:
The distance formula states that the distance between two points
and
is
.
The two points we have are
and
. Plugging these numbers into the distance formula, we have
.
Simplifying with order of operations, first using the distributive property, gives
.
Squaring and adding gives

which is the answer in simplest form. This also rounds to about 12.04.