<span>arc length = circumference • [central angle (degrees) ÷ 360]
Solving this equation for circumference:
</span>
<span>circumference = arc length / (central angle / 360)
</span><span>circumference = 12 / (85/360)
</span>circumference = 12 / <span><span>0.2361111111
</span>
</span>
<span>circumference =
</span>
<span>
<span>
<span>
50.8235294118
</span>
</span>
</span>
Source:
http://www.1728.org/radians.htm
Answer:16
Step-by-step explanation:
8^(4/3)=(cube root of 8)^4=2^4=2×2×2×2=16
24q^2 / 8q^-3
lets break this down...
24/8 = 3
q^2 / q^-3....when dividing exponents with the same base, keep the base and subtract the exponents. q^2 / q^-3 = q^(2 -(-3) = q^(2 + 3) = q^5
put them together and u get : 3q^5
Sin 0 sin 3pi/2 and tan pi
cos pi/2 is -.5
cos 0 is 1