Answer:

Step-by-step explanation:
Given
See attachment for wedge
Required

The sample space of the wedge is:


The outcomes greater than 5 are:


So, the probability is:

This gives:


Answer:
780 calories
Step-by-step explanation:
Robert ate a carton of yogurt = 260 calories
he ate a sandwich = 425 calories
And he also ate an orange = 95 calories
Altogether he consumed = 260 + 425 + 95
= 780 calories.
pls mark me brainliest that would be a really great help. Thanks...
Let A( t , f( t ) ) be the point(s) at which the graph of the function has a horizontal tangent => f ' ( t ) = 0.
But, f ' ( x ) = [ ( x^2 ) ' * ( x - 1 ) - ( x^2 ) * ( x - 1 )' ] / ( x - 1 )^2 =>
f ' ( x ) = [ 2x( x - 1 ) - ( x^2 ) * 1 ] / ( x - 1 )^2 => f ' ( x ) = ( x^2 - 2x ) / ( x - 1 )^2;
f ' ( t ) = 0 <=> t^2 - 2t = 0 <=> t * ( t - 2 ) = 0 <=> t = 0 or t = 2 => f ( 0 ) = 0; f ( 2 ) = 4 => A 1 ( 0 , 0 ) and A 2 ( 2 , 4 ).
Answer:
The maximum distance traveled is 4.73 meters in 0.23 seconds.
Step-by-step explanation:
We have that the distance traveled with respect to time is given by the function,
.
Now, differentiating this function with respect to time 't', we get,
d'(t)=9.8t-2.3
Equating d'(t) by 0 gives,
9.8t - 2.3 = 0
i.e. 9.8t = 2.3
i.e. t = 0.23 seconds
Substitute this value in d'(t) gives,
d'(t) = 9.8 × 0.23 - 2.3
d'(t) = 2.254 - 2.3
d'(t) = -0.046.
As, d'(t) < 0, we get that the function has the maximum value at t = 0.23 seconds.
Thus, the maximum distance the skateboard can travel is given by,
.
i.e.
.
i.e.
.
i.e.
.
i.e. d(t) = 4.73021
Hence, the maximum distance traveled is 4.73 meters in 0.23 seconds.
A and D
To get x on one side you have to, in this case, add 3 to both sides. This is the addition property of equality