This is true.
Hope this helps.
Answer:
a.Many mitochondrial genes resemble proteobacteria genes, while the genes in the chloroplast resemble genes found in some photosynthetic bacteria.
c.Mitochondria and chloroplasts both have their own circular DNA and 70S ribosomes that are similar to those found in bacteria.
d.Mitochondria and chloroplasts replicate by a process similar to mitosis.
Explanation:
Endosymbiotic theory states that mitochondria and chloroplast which are organelles of eukaryotic cells were once independently living micro-organisms but with due course of time eukaryotic cells engulfed them and they become an integral part of these eukaryotic cells.
The resemblance between mitochondrial genes with those of proteobacteria and chloroplast genes with photosynthetic bacteria strongly support endosymbiotic theory. Apart from this, the presence of their own DNA that too circular just like prokaryotic microbes and 70 S ribosomes also support this theory. Also just like prokaryotic cells, before cell division mitochondria and chloroplasts undergo replication by means of a process known as binary fission.
The carbon dioxide escapes, and bubbles forth as a gas. Baking soda and vinegar react<span> with each other because of an acid-base </span>reaction<span>. </span>Baking soda<span> is a bicarbonate (NaHCO3) and </span>vinegar<span> is an acetic acid (HCH3COO)</span>
They all have instruments to "uncouple" oxidative phosphorylation from electron transport framework by giving an option system to protons to come back to the mitochondrial grid. As protons enter the lattice without going through ATP synthase, their vitality is discharged as warmth. So these produce warm by uncoupling those two procedures.