Centralangle/360 times area of circle=sector area
120/360 times pi8²=
(1/3)(64pi)=64pi/3 square inches
Check the picture below.
so... you can pretty much see how long RS and QT are, you can just count the units off the grid.
now, let's find QR's length
![\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &Q&(~ 8 &,& 8~) % (c,d) &R&(~ 14 &,& 16~) \end{array}~~ % distance value d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ QR=\sqrt{(14-8)^2+(16-8)^2}\implies QR=\sqrt{6^2+8^2} \\\\\\ QR=\sqrt{36+64}\implies QR=\sqrt{100}\implies QR=10](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%5C%5C%0A%5Cbegin%7Barray%7D%7Bccccccccc%7D%0A%26%26x_1%26%26y_1%26%26x_2%26%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26Q%26%28~%208%20%26%2C%26%208~%29%20%0A%25%20%20%28c%2Cd%29%0A%26R%26%28~%2014%20%26%2C%26%2016~%29%0A%5Cend%7Barray%7D~~%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AQR%3D%5Csqrt%7B%2814-8%29%5E2%2B%2816-8%29%5E2%7D%5Cimplies%20QR%3D%5Csqrt%7B6%5E2%2B8%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AQR%3D%5Csqrt%7B36%2B64%7D%5Cimplies%20QR%3D%5Csqrt%7B100%7D%5Cimplies%20QR%3D10)
and let's also find the length for ST
![\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &S&(~ 20 &,& 16~) % (c,d) &T&(~ 22 &,& 8~) \end{array}~ d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ ST=\sqrt{(22-20)^2+(8-16)^2}\implies ST=\sqrt{2^2+(-8)^2} \\\\\\ ST=\sqrt{4+64}\implies ST=\sqrt{68}\implies ST=\sqrt{4\cdot 17} \\\\\\ ST=\sqrt{2^2\cdot 17}\implies ST=2\sqrt{17}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%5C%5C%0A%5Cbegin%7Barray%7D%7Bccccccccc%7D%0A%26%26x_1%26%26y_1%26%26x_2%26%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26S%26%28~%2020%20%26%2C%26%2016~%29%20%0A%25%20%20%28c%2Cd%29%0A%26T%26%28~%2022%20%26%2C%26%208~%29%0A%5Cend%7Barray%7D~%20%0Ad%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AST%3D%5Csqrt%7B%2822-20%29%5E2%2B%288-16%29%5E2%7D%5Cimplies%20ST%3D%5Csqrt%7B2%5E2%2B%28-8%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AST%3D%5Csqrt%7B4%2B64%7D%5Cimplies%20ST%3D%5Csqrt%7B68%7D%5Cimplies%20ST%3D%5Csqrt%7B4%5Ccdot%2017%7D%0A%5C%5C%5C%5C%5C%5C%0AST%3D%5Csqrt%7B2%5E2%5Ccdot%2017%7D%5Cimplies%20ST%3D2%5Csqrt%7B17%7D)
so, add the lengths of all sides, and that's the perimeter of the trapezoid.
You can divide by the same number every time
Answer: To find the domain, solve the inequality 4 - x > 0. x < 4. Thus, all numbers less than or equal to 4 represent the domain for this function. When trying to find the domain and range from a graph, the domain is found by looking at the graph from left to right.
Step-by-step explanation: your welcome! <3