m ∠b = 133°, m ∠c = 47°, and m ∠d = 133°.
<h3>
Further explanation</h3>
Follow the attached picture. I sincerely hope that's precisely a correct illustration.
We will use a graph of two intersecting straight lines.
Note that m ∠a and m ∠c are vertical angles. Since vertical angles share the same measures, in other words always congruent, we see 
We continue to determine m ∠b and m ∠d.
Note that m ∠b and m ∠d represent supplementary angles. Recall that supplementary angles add up to 180°.
Let us see the following steps.


Both sides subtracted by 47°.

Thus 
Finally, note that m ∠b and m ∠d are vertical angles. Accordingly, 
<u>Conclusion:</u>
- m ∠a = 47°
- m ∠b = 133°
- m ∠c = 47°
- m ∠d = 133°
<u>Notes:</u>
- Supplementary angles are two angles when they add up to 180°.

- Vertical angles are the angles opposite each other when two lines cross. Note that vertical angles are always congruent, or of equal measure.

<h3>Learn more</h3>
- About the measure of the central angle brainly.com/question/2115496
- Undefined terms needed to define angles brainly.com/question/3717797
- Find out the measures of the two angles in a right triangle brainly.com/question/4302397
Keywords: m∠a = 47°, m∠b, m∠c, and m∠d, 133°, vertical angles, supplementary, 180°, congruent
Answer:
The measures of the angles are 150° and 30°.
Step-by-step explanation:
Let x and y represent the measures of the angles, with x representing the larger angle.
x + y = 180 . . . . . . the two angles are supplementary
x = 90 + 2y . . . . . one is 90° more than twice the other
___
Substituting the expression given by the second equation into the first, we have ...
(90 +2y) +y = 180
3y = 90 . . . . . . . . . . collect terms, subtract 90
y = 30 . . . . . . . . . . . divide by the coefficient of y
x = 180 -y = 150
The measures of the angles are 150° and 30°.
This is the equation. Try it for yourself and see if it works.
C= n x 4
5 3/7 - 2 1/5 -> 38/7 - 11/5 = 27/2 = 13 1/2
Regardless of what anyone says, there really isn't an official name for us I guess "Web Developer" or "Web Designer."