3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191 those are some prime numbers :)
Answer:
C
Step-by-step explanation:
the equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y-intercept )
to calculate m use the gradient formula
m = ( y₂ - y₁ ) / ( x₂ - x₁ )
with (x₁, y₁ ) = (0, - 2) and (x₂, y₂ ) = (4, - 1) ← 2 points on the line
m =
= 
note that the line crosses the y-axis at (0, - 2) ⇒ c = - 2
y =
x - 2 ← equation of line
Answer:
1. y' = 3x² / 4y²
2. y'' = 3x/8y⁵[(4y³ – 3x³)]
Step-by-step explanation:
From the question given above, the following data were obtained:
3x³ – 4y³ = 4
y' =?
y'' =?
1. Determination of y'
To obtain y', we simply defferentiate the expression ones. This can be obtained as follow:
3x³ – 4y³ = 4
Differentiate
9x² – 12y²dy/dx = 0
Rearrange
12y²dy/dx = 9x²
Divide both side by 12y²
dy/dx = 9x² / 12y²
dy/dx = 3x² / 4y²
y' = 3x² / 4y²
2. Determination of y''
To obtain y'', we simply defferentiate above expression i.e y' = 3x² / 4y². This can be obtained as follow:
3x² / 4y²
Let:
u = 3x²
v = 4y²
Find u' and v'
u' = 6x
v' = 8ydy/dx
Applying quotient rule
y'' = [vu' – uv'] / v²
y'' = [4y²(6x) – 3x²(8ydy/dx)] / (4y²)²
y'' = [24xy² – 24x²ydy/dx] / 16y⁴
Recall:
dy/dx = 3x² / 4y²
y'' = [24xy² – 24x²y (3x² / 4y² )] / 16y⁴
y'' = [24xy² – 18x⁴/y] / 16y⁴
y'' = 1/16y⁴[24xy² – 18x⁴/y]
y'' = 1/16y⁴[(24xy³ – 18x⁴)/y]
y'' = 1/16y⁵[(24xy³ – 18x⁴)]
y'' = 6x/16y⁵[(4y³ – 3x³)]
y'' = 3x/8y⁵[(4y³ – 3x³)]
Answer:
system 4.
Step-by-step explanation:
3x+6y=9
multiply by 2
6x+12y=18 ....(1)
-2x+-4y=4
multiply by 3
-6x-12y=12 ...(2)
add (1) and (2)
0+0=30
which is impossible .It has no solutions.
Answer:
9
Step-by-step explanation:
Use PEMDAS (Parenthesis, exponent, multiplication, devision, addition, subtraction)
So....
7 + 2 .... Simplified ( 10/5 =2)
9 ..... Added
Hope this helps!