Answer is C as all other choices are even numbers therefore make the equation non-integer.
Answer (<u>assuming it can be in slope-intercept form)</u>:
y = -x - 1
Step-by-step explanation:
When knowing the slope of a line and its y-intercept, you can write an equation to represent it in slope-intercept form, or y = mx + b format. Substitute the m and b for real values.
1) First, find the slope of the equation, or m. Pick any two points from the line and substitute their x and y values into the slope formula,
. I chose the points (0, -1) and (-1, 0):

Thus, the slope is -1.
2) Now, find the y-intercept, or b. The y-intercept of a line is the point at which the line crosses the y-axis. By reading the graph, we can see that the line intersects the y-axis at the point (0,-1), therefore that must be the y-intercept.
3) Now, substitute the found values into the y = mx + b formula. Substitute -1 for m and -1 for b:

Answer:
17
Step-by-step explanation:
The two integers could be -1 and 18.
18 + -1 = 17
Any other combination of integers that have a product of -18 would have a smaller sum.
Answer:
k = 12
Step-by-step explanation:
Given:
The equation 
To find:
Value of
for which the given equation has one distinct real solution.
Solution:
The given equation is a quadratic equation.
There are always two solutions of a quadratic equation.
For the equation:
to have one distinct solution:

Here,
a = 2,
b = -k and
c = 18
Putting the values, we get:

The equation becomes:

And the one root is:

Answer:
Seven million two thousand five hundred in standard form is 7002500