A right triangle can be considered as a special type
because the relationship of its sides can be described using the hypotenuse
formula:
c^2 = a^2 + b^2
or
c^2 = x^2 + y^2
where,
c is the hypotenuse of the triangle and is the side
opposite to the 90° angle
while a and b are the sides adjacent to the 90° angle
In the problem statement, we are given that one of the
side has a measure of 2 = x, while the hypotenuse is 5 = c, therefore calculating
for y:
y^2 = c^2 – x^2
y^2 = 5^2 – 2^2
y^2 = 21
y = 4.58
The natural number is the number before the decimal.
Therefore the answer is:
y = 4
Answer:
0.1587
Step-by-step explanation:
Let X be the commuting time for the student. We know that
. Then, the normal probability density function for the random variable X is given by
. We are seeking the probability P(X>35) because the student leaves home at 8:25 A.M., we want to know the probability that the student will arrive at the college campus later than 9 A.M. and between 8:25 A.M. and 9 A.M. there are 35 minutes of difference. So,
= 0.1587
To find this probability you can use either a table from a book or a programming language. We have used the R statistical programming language an the instruction pnorm(35, mean = 30, sd = 5, lower.tail = F)
Answer:
In 54 minutes, it'll be 10:30.
Answer:
she had lots of paint
Step-by-step explanation:
ur welcome boo
AAAASSAAAALAKSKSKDKDKDJFJJFJFJFJFJFJF