When it comes to population evolution and genetics, we cannot fail to cite the Hardy-Weinberg principle which emphasizes that if evolutionary factors such as natural selection, mutation, migration and genetic oscillation do not act on a particular population, the frequencies genotypic proportions will remain constant.
The five requirements for a population to be in Hardy-Weinberg equilibrium are:
- Large-scale breeding population: For a population to be in Hardy-Weinberg equilibrium, it is important that this population is large, as small populations favor genetic drift (unanticipated fluctuations in allele frequencies from one generation to another).
- Random mating: In order for the Hardy-Weinberg equilibrium to occur, it is necessary that the mating occur at random, with no preference for certain groups within the population. In this case, we say that the population is in panmixia, that is, they all mate at random.
- No mutations: Mutations alter the total alleles present in a population (gene pool). Therefore, in a Hardy-Weinberg equilibrium population, no mutations should occur.
- No gene flow: When there is gene flow due to migration or immigration of individuals, some genes may be included or excluded from the population. Thus, in an equilibrium situation, no gene flow occurs.
- Lack of natural selection: For a population to be in Hardy-Weinberg equilibrium, natural selection must not be acting on it. If natural selection acts, some genotypes will be selected, modifying the allelic frequencies of the population.
Answer:
agouti - aaBbCc
solid color - AaBBCC
agouti black - AAbbCc
albino - AaBbcc/Aabbcc/AABBcc
Explanation: All the phenotypes that contain cc will be albinos, so they won't present any pigment deposition. Agouti black depends on the A gene to be homozygous and the B to be recessive, so the phenotype AAbbC_ is the correspondent. If A is not homozygous and B isn't recessive, we have agouti color. If B is homozygous and A recessive, we have a solid color.
Answer and explanation:
Epinephrine and norepinephrine are two hormones that are released from the adrenal medulla when the body is under stress (like during exercise, for example) as a part of the sympathetic response.
These hormones have many functions and they all work together to prepare the individual for a fight or flight response -<em> like increasing heart rate and producing bronchodilatation</em>. One of these functions is the rise of glucose levels in blood which is important for this substance to reach several tissues, like the skeletal muscle. The skeletal muscle will make use of this glucose to produce ATP and generate the required energy for muscle contraction through a process called glycolysis, which is key for the fight or flight response mentioned above.
When we exercise, glucose levels rise thanks to these hormones so the skeletal muscle can have enough energy to contract and move as we want. If the exercise is too intense or prolongued, glucose levels will drop and other fuels will be needed to sustain this activity, like stored glycogen and fat.
Answer:
justin
Explanation:
because there is no gravity in space
The corresponding mRNA sequence would be: GCUAAU GUC