Answer:
Step-by-step explanation:
eq. of any line withslope 1/6 is
y=1/6x+c
∵ it passes through (-2,7)
so 7=1/6(-2)+c
c=7+1/3=22/3
eq. of line is
y=1/6x+22/3
For this case we have the following equation:
r = 9 sin (θ)
In addition, we have the following change of variables:
y = r * sine (θ)
Rewriting the equation we have:
r = 9 sin (θ)
r = 9 (y / r)
r ^ 2 = 9y
On the other hand:
r ^ 2 = x ^ 2 + y ^ 2
Substituting values:
x ^ 2 + y ^ 2 = 9y
Rewriting:
x ^ 2 + y ^ 2 - 9y = 0
Completing squares:
x ^ 2 + y ^ 2 - 9y + (-9/2) ^ 2 = (-9/2) ^ 2
Rewriting:
x ^ 2 + 1/4 (2y-9) ^ 2 = 81/4
4x ^ 2 + (2y-9) ^ 2 = 81
Answer:
The Cartesian equation is:
4x ^ 2 + (2y-9) ^ 2 = 81
Answer: 0.8238
Step-by-step explanation:
Given : Scores on a certain intelligence test for children between ages 13 and 15 years are approximately normally distributed with
and
.
Let x denotes the scores on a certain intelligence test for children between ages 13 and 15 years.
Then, the proportion of children aged 13 to 15 years old have scores on this test above 92 will be :-
![P(x>92)=1-P(x\leq92)\\\\=1-P(\dfrac{x-\mu}{\sigma}\leq\dfrac{92-106}{15})\\\\=1-P(z\leq })\\\\=1-P(z\leq-0.93)=1-(1-P(z\leq0.93))\ \ [\because\ P(Z\leq -z)=1-P(Z\leq z)]\\\\=P(z\leq0.93)=0.8238\ \ [\text{By using z-value table.}]](https://tex.z-dn.net/?f=P%28x%3E92%29%3D1-P%28x%5Cleq92%29%5C%5C%5C%5C%3D1-P%28%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5Cleq%5Cdfrac%7B92-106%7D%7B15%7D%29%5C%5C%5C%5C%3D1-P%28z%5Cleq%20%7D%29%5C%5C%5C%5C%3D1-P%28z%5Cleq-0.93%29%3D1-%281-P%28z%5Cleq0.93%29%29%5C%20%5C%20%5B%5Cbecause%5C%20P%28Z%5Cleq%20-z%29%3D1-P%28Z%5Cleq%20z%29%5D%5C%5C%5C%5C%3DP%28z%5Cleq0.93%29%3D0.8238%5C%20%5C%20%5B%5Ctext%7BBy%20using%20z-value%20table.%7D%5D)
Hence, the proportion of children aged 13 to 15 years old have scores on this test above 92 = 0.8238
Answer:
ㅎ 포토 타임 왔습니다
Step-by-step explanation:
по поводу того что бы не можете дозвониться не смогла найти