Since LM = AM, point M must be on the perpendicular bisector of AL. Since AM = BM, BL must be perpendicular to AL. This makes ∆ALC a right triangle with hypotenuse AC twice the length of side AL. Hence ∠LAC = ∠LAB = 60°, and AL is angle bisector, median, and altitude.
ΔABC is isosceles with ∠A = 120°, and ∠B = ∠C = 30°.
- To divide the triangles into these regions, you should construct the <u>perpendicular bisector</u> of each segment.
- These perpendicular bisectors intersect and divide each triangle into three regions.
- The points in each region are those closest to the vertex in that <u>region</u>.
<h3>What is a triangle?</h3>
A triangle can be defined as a two-dimensional geometric shape that comprises three (3) sides, three (3) vertices and three (3) angles only.
<h3>What is a line segment?</h3>
A line segment can be defined as the part of a line in a geometric figure such as a triangle, circle, quadrilateral, etc., that is bounded by two (2) distinct points and it typically has a fixed length.
<h3>What is a
perpendicular bisector?</h3>
A perpendicular bisector can be defined as a type of line that bisects (divides) a line segment exactly into two (2) halves and forms an angle of 90 degrees at the point of intersection.
In this scenario, we can reasonably infer that to divide the triangles into these regions, you should construct the <u>perpendicular bisector</u> of each segment. These perpendicular bisectors intersect and divide each triangle into three regions. The points in each region are those closest to the vertex in that <u>region</u>.
Read more on perpendicular bisectors here: brainly.com/question/27948960
#SPJ1
Answer:
width=1005 length=1335
Step-by-step explanation:
If the length is 330 ft greater than you would subtract 330 from 2340 and then divide 2010 by 2 to get 1005 then add 330 to 1005 and get 1335
Answer:
10 losses
Step-by-step explanation:
Here, we want to get the greatest possible number of games the team lost
Let the number of games won be x
Number drawn be y
Number lost be z
Mathematically;
x + y + z = 38
Let’s now work with the points
3(x) + 1(y) + z(0) = 80
3x + y = 80
So we have two equations here;
x + y + z = 80
3x + y = 80
The greatest possible number of games lost will minimize both the number of games won and the number of games drawn
We can have the following possible combinations of draws and wins;
26-2
25-5
24-8
23-11
22-14
21-17
21-17 is the highest possible to give a loss of zero
Subtracting each sum from 38, we have the following loses:
10, 8, 6, 4, 2 and 0
This shows the greatest possible number of games lost is 10